This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264827 #21 Dec 12 2021 09:28:52 %S A264827 3,5,7,5,16,19,7,8,13,7,33,37,9,56,61,11,24,31,11,85,91,13,35,43,13, %T A264827 120,127,15,161,169,16,39,49,17,63,73,17,208,217,19,80,91,19,261,271, %U A264827 21,320,331,23,120,133,23,385,397,24,95,109,25,143,157 %N A264827 (a,b,c) in lexicographic order such that a^2 + b^2 + a*b - c^2 = 0 with a < b < c and gcd(a, b) = 1. %C A264827 The sides of a primitive 120-degree integer triangle. %H A264827 Colin Barker, <a href="/A264827/b264827.txt">Table of n, a(n) for n = 1..9999</a> %H A264827 Wikipedia, <a href="https://en.wikipedia.org/wiki/Eisenstein_triple">Eisenstein triple</a> %e A264827 Triples (a,b,c) begin: %e A264827 3, 5, 7; %e A264827 5, 16, 19; %e A264827 7, 8, 13; %e A264827 7, 33, 37; %e A264827 9, 56, 61; %e A264827 ... %o A264827 (PARI) %o A264827 pt120(a) = { %o A264827 my(L=List(), n=-3*a^2, f, g, b, c); %o A264827 fordiv(n, f, %o A264827 g=n\f; %o A264827 if(f>g && (g+f)%2==0 && (f-g)%4==0, %o A264827 c=(f-g)\4; b=((f+g)\2-a)\2; %o A264827 if(b>0 && a<b && gcd(a, b)==1, listput(L, [a,b,c])) %o A264827 ) %o A264827 ); %o A264827 Vec(L) %o A264827 } %o A264827 concat(concat(vector(30, a, pt120(a)))) %Y A264827 Cf. A002476, A229849, A229858, A229859, A264826. %K A264827 nonn,tabf %O A264827 1,1 %A A264827 _Colin Barker_, Nov 26 2015