This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264867 #16 Mar 08 2023 16:07:15 %S A264867 2,5,10,26,34,35,37,59,68,76,104,106,188,193,242,278,287,290,572,772, %T A264867 773,1304,2384,2716,3715,4562,6706,11489,11711,21602,24295,24775, %U A264867 27224,29935,37856 %N A264867 Numbers n such that n!3 + 3^8 is prime, where n!3 = n!!! is a triple factorial number (A007661). %C A264867 Corresponding primes are 6563, 6571, 6841, 2504908961, 17961239302561, 81359229958561, 664565853958561, ... %C A264867 Terms > 68 correspond to probable primes. %C A264867 a(36) > 50000. %H A264867 Henri & Renaud Lifchitz, <a href="http://www.primenumbers.net/prptop/searchform.php?form=n!3+6561&action=Search">PRP Records. Search for n!3+3^8</a> %H A264867 Joe McLean, <a href="http://web.archive.org/web/20091027034731/http://uk.geocities.com/nassarawa%40btinternet.com/probprim2.htm">Interesting Sources of Probable Primes</a> %H A264867 OpenPFGW Project, <a href="http://sourceforge.net/projects/openpfgw/">Primality Tester</a> %e A264867 10!3 + 3^4 = 10*7*4*1 + 6561 = 6841 is prime, so 10 is in the sequence. %t A264867 MultiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*MultiFactorial[n - k, k]]]; %t A264867 Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 3] + 3^8] &] %t A264867 Select[Range[800],PrimeQ[6561+Times@@Range[#,1,-3]]&] (* _Harvey P. Dale_, Mar 08 2023 *) %o A264867 (PARI) is(n)=ispseudoprime(n!!! + 3^8) \\ _Anders Hellström_, Nov 27 2015 %o A264867 (PARI) tf(n) = prod(i=0,(n-1)\3, n-3*i); %o A264867 for(n=1, 1e4, if(ispseudoprime(tf(n) + 3^8), print1(n , ", "))) \\ _Altug Alkan_, Dec 03 2015 %Y A264867 Cf. A007661, A037082, A084438, A243078. %K A264867 nonn,more %O A264867 1,1 %A A264867 _Robert Price_, Nov 26 2015