This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264869 #14 Aug 29 2017 12:18:52 %S A264869 1,1,1,2,2,2,4,6,6,6,10,16,22,22,22,26,48,70,92,92,92,74,144,236,328, %T A264869 420,420,420,218,454,782,1202,1622,2042,2042,2042,672,1454,2656,4278, %U A264869 6320,8362,10404,10404,10404,2126,4782,9060,15380,23742,34146,44550,54954,54954,54954 %N A264869 Triangular array: For n >= 2 and 0 <= k <= n - 2, T(n, k) equals the number of rooted duplication trees on n gene segments whose leftmost visible duplication event is (k, r), for 1 <= r <= (n - k)/2. %C A264869 See Figure 3(a) in Gascuel et al. (2003). %D A264869 O. Gascuel (Ed.), Mathematics of Evolution and Phylogeny, Oxford University Press, 2005 %H A264869 O. Gascuel, M. Hendy, A. Jean-Marie and R. McLachlan, (2003) <a href="http://www.massey.ac.nz/~rmclachl/duplications.pdf">The combinatorics of tandem duplication trees</a>, Systematic Biology 52, 110-118. %H A264869 J. Yang and L. Zhang, <a href="http://dx.doi.org/10.1093/molbev/msh115">On Counting Tandem Duplication Trees</a>, Molecular Biology and Evolution, Volume 21, Issue 6, (2004) 1160-1163. %F A264869 T(n,k) = Sum_{j = 0.. k+1} T(n-1,j) for n >= 3, 0 <= k <= n - 2, with T(2,0) = 1 and T(n,k) = 0 for k >= n - 1. %F A264869 T(n,k) = T(n,k-1) + T(n-1,k+1) for n >= 3, 1 <= k <= n - 2. %e A264869 Triangle begins %e A264869 n\k| 0 1 2 3 4 5 6 7 %e A264869 ---+--------------------------------------- %e A264869 2 | 1 %e A264869 3 | 1 1 %e A264869 4 | 2 2 2 %e A264869 5 | 4 6 6 6 %e A264869 6 | 10 16 22 22 22 %e A264869 7 | 26 48 70 92 92 92 %e A264869 8 | 74 144 236 328 420 420 420 %e A264869 9 | 218 454 782 1202 1622 2042 2042 2042 %e A264869 ... %p A264869 A264869 := proc (n, k) option remember; %p A264869 `if`(n <= 2, 1, add(A264869(n - 1, j), j = 0 .. min(k + 1, n - 3))) end proc: %p A264869 seq(seq(A264869(n, k), k = 0..n - 2), n = 2..11); %Y A264869 Cf. A206464 (column 0), A264868 (row sums and main diagonal), A086521. %K A264869 nonn,tabl,easy %O A264869 2,4 %A A264869 _Peter Bala_, Nov 27 2015