cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264872 Array read by antidiagonals: T(n,m) = 2^n*(1+2^n)^m; n,m >= 0.

Original entry on oeis.org

1, 2, 2, 4, 6, 4, 8, 18, 20, 8, 16, 54, 100, 72, 16, 32, 162, 500, 648, 272, 32, 64, 486, 2500, 5832, 4624, 1056, 64, 128, 1458, 12500, 52488, 78608, 34848, 4160, 128, 256, 4374, 62500, 472392, 1336336, 1149984, 270400, 16512, 256, 512, 13122, 312500
Offset: 0

Views

Author

R. J. Mathar, Nov 27 2015

Keywords

Comments

Start with an n X m rectangle and cut it vertically along any set of the m-1 separators. There are binomial(m-1,c) ways of doing this with 0 <= c < m cuts. Inside each of these 1+c regions cut vertically, for which there are 2^(n-1) choices. The total number of ways of dissecting the rectangle into rectangles in this way is Sum_{c=0..m-1} binomial(m-1,c) 2^((1+c)(n-1)) = 2^(n-1)*(1+2^(n-1))^(m-1) = T(n-1,m-1).
The symmetrized version of the array is S(n,m) = T(n,m) + T(m,n) - 2^(m+n) <= A116694(n,m), which counts tilings that start with guillotine cuts either horizontally or vertically, avoiding double counting of the tilings where the order of the cuts does not matter. - R. J. Mathar, Nov 29 2015

Examples

			   1,    2,     4,       8,       16,         32, ...
   2,    6,    18,      54,      162,        486, ...
   4,   20,   100,     500,     2500,      12500, ...
   8,   72,   648,    5832,    52488,     472392, ...
  16,  272,  4624,   78608,  1336336,   22717712, ...
  32, 1056, 34848, 1149984, 37949472, 1252332576, ...
.
The symmetrized version S(n,m) starts
   1,    2,     4,       8,       16,         32, ...
   2,    8,    30,     110,      402,       1478, ...
   4,   30,   184,    1116,     7060,      47220, ...
   8,  110,  1116,   11600,   130968,    1622120, ...
  16,  402,  7060,  130968,  2672416,   60666672, ...
  32, 1478, 47220, 1622120, 60666672, 2504664128, ...
		

Crossrefs

Cf. A000079 (row and column 0), A008776 (row 1), A005054 (row 2), A055275 (row 3), A063376 (column 1).

Programs

  • Maple
    A264872 := proc(n,m)
        2^n*(1+2^n)^m ;
    end proc:
    seq(seq(A264872(n,d-n),n=0..d),d=0..12) ; # R. J. Mathar, Aug 14 2024
  • Mathematica
    Table[2^(n - m) (1 + 2^(n - m))^m, {n, 9}, {m, 0, n}] // Flatten (* Michael De Vlieger, Nov 27 2015 *)

Formula

T(n,m) = 2^n*A264871(n,m).
T(n,m) <= A116694(n+1,m+1).