A264872 Array read by antidiagonals: T(n,m) = 2^n*(1+2^n)^m; n,m >= 0.
1, 2, 2, 4, 6, 4, 8, 18, 20, 8, 16, 54, 100, 72, 16, 32, 162, 500, 648, 272, 32, 64, 486, 2500, 5832, 4624, 1056, 64, 128, 1458, 12500, 52488, 78608, 34848, 4160, 128, 256, 4374, 62500, 472392, 1336336, 1149984, 270400, 16512, 256, 512, 13122, 312500
Offset: 0
Examples
1, 2, 4, 8, 16, 32, ... 2, 6, 18, 54, 162, 486, ... 4, 20, 100, 500, 2500, 12500, ... 8, 72, 648, 5832, 52488, 472392, ... 16, 272, 4624, 78608, 1336336, 22717712, ... 32, 1056, 34848, 1149984, 37949472, 1252332576, ... . The symmetrized version S(n,m) starts 1, 2, 4, 8, 16, 32, ... 2, 8, 30, 110, 402, 1478, ... 4, 30, 184, 1116, 7060, 47220, ... 8, 110, 1116, 11600, 130968, 1622120, ... 16, 402, 7060, 130968, 2672416, 60666672, ... 32, 1478, 47220, 1622120, 60666672, 2504664128, ...
Links
- R. J. Mathar, Counting 2-way monotonic terrace forms over rectangular landscapes, vixra:1511.0225 (2015), Section 6.
Crossrefs
Programs
-
Maple
A264872 := proc(n,m) 2^n*(1+2^n)^m ; end proc: seq(seq(A264872(n,d-n),n=0..d),d=0..12) ; # R. J. Mathar, Aug 14 2024
-
Mathematica
Table[2^(n - m) (1 + 2^(n - m))^m, {n, 9}, {m, 0, n}] // Flatten (* Michael De Vlieger, Nov 27 2015 *)
Comments