This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264885 #33 Mar 01 2016 23:59:57 %S A264885 238,874,2914,3266,3638,4438,5117,6601,7982,8582,9854,10191,10538, %T A264885 10887,11966,13101,17283,19113,23069,38238,40313,41741,46191,53342, %U A264885 54998,56690,68341,74139,80189,84341,88585,90763,95165,98534,100838 %N A264885 Numbers in A007504 such that omega(a(n)) = Omega(a(n)) = 3. %C A264885 The corresponding numbers of prime summands, k(n), are 13, 23, 39, 41, 43, 47, 50, 56, 61, 63, 67, 68, 69, 70, 73, 76, 86, 90, 98, 123, 126, 128, 134, 143, 145, 147, 160, 166, 172, 176, 180, 182, 186, 189, 191, 196, 197, 200, 215, 220, 222, 225, 229, 238, 241, 251, 252, 265, 266, 267, .... %C A264885 Intersection of A007504 and A007304 (sphenic numbers). - _Michel Marcus_, Dec 15 2015 %H A264885 Robert Israel, <a href="/A264885/b264885.txt">Table of n, a(n) for n = 1..10000</a> %e A264885 For n = 1, k(n) = 13 and a(n) = A007504(13) = 238 = 2*7*17. %e A264885 For n = 2, k(n) = 23 and a(n) = A007504(23) = 874 = 2*19*23. %e A264885 For n = 3, k(n) = 39 and a(n) = A007504(39) = 2914 = 2*31*47. %e A264885 For n = 4, k(n) = 41 and a(n) = A007504(41) = 3266 = 2*23*71. %e A264885 For n = 5, k(n) = 43 and a(n) = A007504(43) = 3638 = 2*17*107. %e A264885 For n = 6, k(n) = 47 and a(n) = A007504(47) = 4438 = 2*7*317. %e A264885 Note that for each of the elements of the sequence, omega(a(n)) = Omega(a(n)) = 3, i.e., the number of prime factors of a(n) = the number of distinct prime factors of a(n) = 3. %p A264885 N:= 10^4: # to use primes up to N %p A264885 select(t -> numtheory:-bigomega(t)=3 and numtheory:-issqrfree(t), %p A264885 ListTools:-PartialSums(select(isprime,[2,seq(i,i=3..N,2)]))); # _Robert Israel_, Dec 15 2015 %t A264885 t = Accumulate@ Prime@ Range@ 300; Select[Range[2*10^5], And[MemberQ[t, #], PrimeNu@ # == PrimeOmega@ # == 3] &] (* _Michael De Vlieger_, Nov 27 2015, after _Zak Seidov_ at A007504 *) %o A264885 (PARI) lista(nn) = {my(s = 0); for (n=1, nn, s += prime(n); if ((omega(s) == 3) && (bigomega(s)==3), print1(s, ", ")););} \\ _Michel Marcus_, Nov 28 2015 %Y A264885 Cf. A001221, A001222, A007304, A007504, A013918, A189072, A264887. %K A264885 nonn %O A264885 1,1 %A A264885 _Debapriyay Mukhopadhyay_, Nov 27 2015