cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264903 Number of defective parking functions of length 2n and defect n.

This page as a plain text file.
%I A264903 #19 Aug 19 2017 11:00:55
%S A264903 1,1,23,1442,176843,36046214,11023248678,4719570364004,
%T A264903 2693983725947891,1976997422623843358,1813499364725872444178,
%U A264903 2033181299894696684493980,2735368952738645928181452734,4349180440965667221581315433212,8067655677482008559181766540571948
%N A264903 Number of defective parking functions of length 2n and defect n.
%H A264903 Alois P. Heinz, <a href="/A264903/b264903.txt">Table of n, a(n) for n = 0..200</a>
%H A264903 Peter J. Cameron, Daniel Johannsen, Thomas Prellberg, Pascal Schweitzer, <a href="https://arxiv.org/abs/0803.0302">Counting Defective Parking Functions</a>, arXiv:0803.0302 [math.CO], 2008
%F A264903 a(n) = A264902(2n,n).
%F A264903 a(n) ~ c * d^n * n^(2*n), where d = 4 * ((1-r)/(2-r))^(2-r) * ((1+r)/r)^r = 1.37946886318881879639758089832698445354075122787883765455607405487162077... where r = 0.3507604755943619981673674677676002458987390260372260977704596... is the root of the equation (((2-r)*(1+r))/((1-r)*r))^(1-r^2) = exp(2) and c = 0.71338164469811281152311896105657925861924201644973836628479626510877... - _Vaclav Kotesovec_, Aug 19 2017
%e A264903 a(2) = 23: [1,4,4,4], [2,4,4,4], [3,3,3,3], [3,3,3,4], [3,3,4,3], [3,3,4,4], [3,4,3,3], [3,4,3,4], [3,4,4,3], [3,4,4,4], [4,1,4,4], [4,2,4,4], [4,3,3,3], [4,3,3,4], [4,3,4,3], [4,3,4,4], [4,4,1,4], [4,4,2,4], [4,4,3,3], [4,4,3,4], [4,4,4,1], [4,4,4,2], [4,4,4,3].
%p A264903 S:= (n, k)-> `if`(k=0, n^n, add(binomial(n, i)*k*
%p A264903              (k+i)^(i-1)*(n-k-i)^(n-i), i=0..n-k)):
%p A264903 a:= n-> S(2*n, n)-S(2*n, n+1):
%p A264903 seq(a(n), n=0..20);
%t A264903 s[n_, k_] :=  Sum[Binomial[n, i]*k*(k + i)^(i - 1)*(n - k - i)^(n - i), {i, 0, n - k}]; Flatten[{1, Table[s[2*n, n] - s[2*n, n + 1], {n, 1, 20}]}] (* _Vaclav Kotesovec_, Aug 19 2017 *)
%t A264903 (* constant d *) 4*((1 - r)/(2 - r))^(2 - r)*((1 + r)/r)^r /.FindRoot[(((2 - r)*(1 + r))/((1 - r)*r))^(1 - r^2) == E^2, {r, 1/2}, WorkingPrecision -> 100] (* _Vaclav Kotesovec_, Aug 19 2017 *)
%Y A264903 Cf. A264902.
%K A264903 nonn
%O A264903 0,3
%A A264903 _Alois P. Heinz_, Nov 28 2015