cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264905 Expansion of Product_{k>=1} (1 + x^k + x^(3*k)).

Original entry on oeis.org

1, 1, 1, 3, 2, 4, 6, 7, 8, 13, 16, 18, 26, 29, 38, 49, 58, 68, 90, 101, 125, 156, 181, 214, 263, 304, 358, 435, 505, 589, 701, 812, 939, 1115, 1275, 1485, 1736, 1991, 2286, 2667, 3038, 3489, 4028, 4588, 5240, 6036, 6833, 7787, 8904, 10078, 11429, 13020, 14698
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1+x^k+x^(3*k), {k,1,nmax}], {x,0,nmax}], x]
    nmax = 100; p = ConstantArray[0, nmax + 1]; p[[1]] = 1; p[[2]] = 1; p[[4]] = 1; Do[Do[p[[j+1]] = p[[j+1]] + p[[j - k + 1]] + If[j < 3*k, 0, p[[j - 3*k + 1]]], {j, nmax, k, -1}];, {k, 2, nmax}]; p (* Vaclav Kotesovec, May 10 2018 *)

Formula

a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt(3*Pi)*n^(3/4)), where c = Integral_{0..infinity} log(1 + exp(-x) + exp(-3*x)) dx = 0.9953865985263189816963357718655148864441174218433250148867... . - Vaclav Kotesovec, Jan 05 2016