This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264910 #9 Aug 14 2017 03:31:54 %S A264910 1,1,5,30,195,1380,10555,86815,764350,7174420,71532369,755136887, %T A264910 8415519048,98744576456,1216948265335,15718032335081,212330461568282, %U A264910 2994374695258034,44008250794756373,672986694107199687,10692604102273015636,176266660430175342285 %N A264910 Number of 5-ascent sequences of length n with no consecutive repeated letters. %H A264910 Alois P. Heinz, <a href="/A264910/b264910.txt">Table of n, a(n) for n = 0..200</a> %H A264910 S. Kitaev, J. Remmel, <a href="https://arxiv.org/abs/1503.00914">p-Ascent Sequences</a>, arXiv:1503.00914 [math.CO], 2015 %p A264910 b:= proc(n, i, t) option remember; `if`(n<1, 1, add( %p A264910 `if`(j=i, 0, b(n-1, j, t+`if`(j>i, 1, 0))), j=0..t+5)) %p A264910 end: %p A264910 a:= n-> (b(n-1, 0$2)): %p A264910 seq(a(n), n=0..30); %t A264910 b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Sum[If[j==i, 0, b[n-1, j, t + If[j>i, 1, 0]]], {j, 0, t+5}]]; %t A264910 a[n_] := b[n-1, 0, 0]; %t A264910 Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Aug 14 2017, translated from Maple *) %Y A264910 Column k=5 of A264909. %K A264910 nonn %O A264910 0,3 %A A264910 _Alois P. Heinz_, Nov 28 2015