This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264935 #7 Nov 28 2015 22:08:52 %S A264935 6,11,14,16,17,20,23,24,34,38,39,42,48,49,58,66,74,77,83,87,102,104, %T A264935 110,120,136,145,156,158,172,177,178,183,195,201,233,235,250,256,260, %U A264935 273,277,282,288,293,306,319,325,329,373,389,399,415,458,512,589,609,695,862,989,1063 %N A264935 Numbers k such that the average of the digits of the k-th Fibonacci number is greater than 5. %C A264935 As k increases, it appears that the average of the digits of the k-th Fibonacci number approaches 9/2 (the same as would be expected with increasingly longer strings of random decimal digits). %C A264935 a(60) = 1063 is almost certainly the last term in the sequence. %C A264935 It seems nearly certain that there are only 11 Fibonacci numbers whose average digit is exactly 5; their indices are k = 5, 10, 35, 78, 97, 138, 184, 189, 300, 437, and 550. %e A264935 The first several terms and their corresponding Fibonacci numbers, number of digits D, digit sum S, and average digit values are as follows: %e A264935 . %e A264935 k | Fibonacci(k) | D | S | avg. digit value %e A264935 ---+--------------+----+----+----------------- %e A264935 6 | 8 | 1 | 8 | 8.00000000000000 %e A264935 11 | 89 | 2 | 17 | 8.50000000000000 %e A264935 14 | 377 | 3 | 17 | 5.66666666666667 %e A264935 16 | 987 | 3 | 24 | 8.00000000000000 %e A264935 17 | 1597 | 4 | 22 | 5.50000000000000 %e A264935 20 | 6765 | 4 | 24 | 6.00000000000000 %e A264935 23 | 28657 | 5 | 28 | 5.60000000000000 %e A264935 24 | 46368 | 5 | 27 | 5.40000000000000 %e A264935 34 | 5702887 | 7 | 37 | 5.28571428571429 %e A264935 38 | 39088169 | 8 | 44 | 5.50000000000000 %e A264935 39 | 63245986 | 8 | 43 | 5.37500000000000 %e A264935 42 | 267914296 | 9 | 46 | 5.11111111111111 %e A264935 48 | 4807526976 | 10 | 54 | 5.40000000000000 %e A264935 49 | 7778742049 | 10 | 55 | 5.50000000000000 %e A264935 58 | 591286729879 | 12 | 73 | 6.08333333333333 %e A264935 . %e A264935 (Fibonacci(58) is almost certainly the last Fibonacci number whose average digit exceeds 98/17 = 5.764705...) %t A264935 Select[Range@ 1200, Mean@ IntegerDigits@ Fibonacci@ # > 5 &] (* _Michael De Vlieger_, Nov 28 2015 *) %Y A264935 Cf. A000045. %K A264935 nonn,base %O A264935 1,1 %A A264935 _Jon E. Schoenfield_, Nov 28 2015