This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264960 #23 Mar 05 2025 05:25:27 %S A264960 1,2,10,32,146,512,2248,8192,35218,131072,556040,2097152,8815496, %T A264960 33554432,140107040,536870912,2230302098,8589934592,35541690568, %U A264960 137438953472,566823203656,2199023255552,9044910175520,35184372088832,144393718191496 %N A264960 Half-convolution of the central binomial coefficients A000984 with itself. %C A264960 The half-convolution of a sequence {s(n)}n>=0 with itself is defined by r(n) := Sum_{k = 0..floor(n/2)} s(k)*s(n-k). See A201204. %H A264960 Muniru A Asiru, <a href="/A264960/b264960.txt">Table of n, a(n) for n = 0..1520</a> %F A264960 a(n) = Sum_{k = 0..floor(n/2)} binomial(2*k,k)*binomial(2*n - 2*k, n - k). %F A264960 a(2*n + 1) = 2^(4*n + 1) = A013776(n). %F A264960 a(2*n) = (1/2)*(binomial(2*n,n)^2 + 16^n) = A112830(2*n,n). %F A264960 O.g.f.: (1/2)*( 2/Pi*EllipticK(4*x) + 1/(1 - 4*x) ). %F A264960 E.g.f.: (1/2)*( cosh(4*x) + sinh(4*x) + (BesselI(0,2*x))^2 ). %F A264960 D-finite with recurrence: - (2*n-3)*n^2*a(n) + 4*(2*n-1)*(n-1)^2*a(n-1) + 16*(2*n-3)*(n-1)^2*a(n-2) - 64*(2*n-1)*(n-2)^2*a(n-3) = 0. - _Georg Fischer_, Nov 25 2022 %p A264960 A264960:= n-> add(binomial(2*k,k)*binomial(2*n - 2*k, n - k),k = 0..floor(n/2)): %p A264960 seq(A264960(n),n = 0..24); %t A264960 a[n_] := Sum[Binomial[2k, k]*Binomial[2n - 2k, n - k], {k, 0, Floor[n/2]}]; Array[a, 30, 0] (* _Amiram Eldar_, Nov 25 2018 *) %o A264960 (PARI) a(n) = sum(k = 0, n\2, binomial(2*k,k)*binomial(2*n - 2*k, n - k)); \\ _Michel Marcus_, Nov 30 2015 %o A264960 (GAP) List([0..24],n->Sum([0..Int(n/2)],k->Binomial(2*k,k)*Binomial(2*n-2*k,n-k))); # _Muniru A Asiru_, Nov 25 2018 %o A264960 (Magma) [(&+[Binomial(2*k,k)*Binomial(2*n-2*k, n-k): k in [0..Floor(n/2)]]): n in [0..30]]; // _G. C. Greubel_, Nov 26 2018 %o A264960 (Sage) [sum(binomial(2*k,k)*binomial(2*n-2*k, n-k) for k in (0..floor(n/2))) for n in range(30)] # _G. C. Greubel_, Nov 26 2018 %Y A264960 Cf. A002894, A013776, A112830. %K A264960 nonn,easy %O A264960 0,2 %A A264960 _Peter Bala_, Nov 29 2015