cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264961 Numbers that are products of two triangular numbers in more than one way.

This page as a plain text file.
%I A264961 #20 Jun 03 2018 02:06:29
%S A264961 36,45,210,315,360,630,780,990,1260,1386,1540,1800,2850,2970,3510,
%T A264961 3570,3780,4095,4788,4851,6300,7920,8415,8550,8778,9450,11700,11781,
%U A264961 14850,15400,15561,16380,17640,17955,18018,18648,19110,20790,21420,21450,21528,25116,25200,26565,26775,26796,27720,28980
%N A264961 Numbers that are products of two triangular numbers in more than one way.
%C A264961 One of the factors in the product may be 1 = A000217(1). We count the ways of writing n = A000217(i)*A000217(j) with i <= j, unordered factorizations.
%H A264961 Chai Wah Wu, <a href="/A264961/b264961.txt">Table of n, a(n) for n = 1..10602</a>
%e A264961 36 = 1*36 = 6*6. 45 = 1*45 = 3*15. 210 = 1*210 = 10*21. 315 = 3*105 = 15*21. 360 = 3*120 = 10*36. 630 = 1*630 = 3*210 = 6*105. 3780= 6*360 = 10 * 378 = 36*105.
%p A264961 A264961ct := proc(n)
%p A264961     local ct,d ;
%p A264961     ct := 0 ;
%p A264961     for d in numtheory[divisors](n) do
%p A264961         if d^2 > n then
%p A264961             return ct;
%p A264961         end if;
%p A264961         if isA000217(d) then
%p A264961             if isA000217(n/d) then
%p A264961                 ct := ct+1 ;
%p A264961             end if;
%p A264961         end if;
%p A264961     end do:
%p A264961     return ct;
%p A264961 end proc:
%p A264961 for n from 1 to 30000 do
%p A264961     if A264961ct(n) > 1 then
%p A264961         printf("%d,",n) ;
%p A264961     end if;
%p A264961 end do:
%t A264961 lim = 10000; t = Accumulate[Range@lim]; f[n_] := Select[{#, n/#} & /@ Select[Divisors@ n, # <= Sqrt@ n && MemberQ[t, #] &], MemberQ[t, Last@ #] &]; Select[Range@ lim, Length@ f@ # == 2 &] (* _Michael De Vlieger_, Nov 29 2015 *)
%o A264961 (Python)
%o A264961 from __future__ import division
%o A264961 mmax = 10**3
%o A264961 tmax, A264961_dict = mmax*(mmax+1)//2, {}
%o A264961 ti = 0
%o A264961 for i in range(1,mmax+1):
%o A264961     ti += i
%o A264961     p = ti*i*(i-1)//2
%o A264961     for j in range(i,mmax+1):
%o A264961         p += ti*j
%o A264961         if p <= tmax:
%o A264961             A264961_dict[p] = 2 if p in A264961_dict else 1
%o A264961         else:
%o A264961             break
%o A264961 A264961_list = sorted([i for i in A264961_dict if A264961_dict[i] > 1]) # _Chai Wah Wu_, Nov 29 2015
%Y A264961 Subsequence of A085780. A188630 and A110904 are subsequences of this.
%K A264961 nonn
%O A264961 1,1
%A A264961 _R. J. Mathar_, Nov 29 2015