This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264961 #20 Jun 03 2018 02:06:29 %S A264961 36,45,210,315,360,630,780,990,1260,1386,1540,1800,2850,2970,3510, %T A264961 3570,3780,4095,4788,4851,6300,7920,8415,8550,8778,9450,11700,11781, %U A264961 14850,15400,15561,16380,17640,17955,18018,18648,19110,20790,21420,21450,21528,25116,25200,26565,26775,26796,27720,28980 %N A264961 Numbers that are products of two triangular numbers in more than one way. %C A264961 One of the factors in the product may be 1 = A000217(1). We count the ways of writing n = A000217(i)*A000217(j) with i <= j, unordered factorizations. %H A264961 Chai Wah Wu, <a href="/A264961/b264961.txt">Table of n, a(n) for n = 1..10602</a> %e A264961 36 = 1*36 = 6*6. 45 = 1*45 = 3*15. 210 = 1*210 = 10*21. 315 = 3*105 = 15*21. 360 = 3*120 = 10*36. 630 = 1*630 = 3*210 = 6*105. 3780= 6*360 = 10 * 378 = 36*105. %p A264961 A264961ct := proc(n) %p A264961 local ct,d ; %p A264961 ct := 0 ; %p A264961 for d in numtheory[divisors](n) do %p A264961 if d^2 > n then %p A264961 return ct; %p A264961 end if; %p A264961 if isA000217(d) then %p A264961 if isA000217(n/d) then %p A264961 ct := ct+1 ; %p A264961 end if; %p A264961 end if; %p A264961 end do: %p A264961 return ct; %p A264961 end proc: %p A264961 for n from 1 to 30000 do %p A264961 if A264961ct(n) > 1 then %p A264961 printf("%d,",n) ; %p A264961 end if; %p A264961 end do: %t A264961 lim = 10000; t = Accumulate[Range@lim]; f[n_] := Select[{#, n/#} & /@ Select[Divisors@ n, # <= Sqrt@ n && MemberQ[t, #] &], MemberQ[t, Last@ #] &]; Select[Range@ lim, Length@ f@ # == 2 &] (* _Michael De Vlieger_, Nov 29 2015 *) %o A264961 (Python) %o A264961 from __future__ import division %o A264961 mmax = 10**3 %o A264961 tmax, A264961_dict = mmax*(mmax+1)//2, {} %o A264961 ti = 0 %o A264961 for i in range(1,mmax+1): %o A264961 ti += i %o A264961 p = ti*i*(i-1)//2 %o A264961 for j in range(i,mmax+1): %o A264961 p += ti*j %o A264961 if p <= tmax: %o A264961 A264961_dict[p] = 2 if p in A264961_dict else 1 %o A264961 else: %o A264961 break %o A264961 A264961_list = sorted([i for i in A264961_dict if A264961_dict[i] > 1]) # _Chai Wah Wu_, Nov 29 2015 %Y A264961 Subsequence of A085780. A188630 and A110904 are subsequences of this. %K A264961 nonn %O A264961 1,1 %A A264961 _R. J. Mathar_, Nov 29 2015