This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264984 #12 May 22 2017 20:07:42 %S A264984 0,2,4,6,8,10,12,22,16,18,20,14,24,26,28,30,64,46,36,58,40,66,76,34, %T A264984 48,70,52,54,56,38,60,74,32,42,68,50,72,62,44,78,80,82,84,190,136,90, %U A264984 172,118,192,226,100,138,208,154,108,166,112,174,220,94,120,202,148,198,184,130 %N A264984 Even bisection of A263273; terms of A263262 doubled. %F A264984 a(n) = 2 * A263272(n). %F A264984 a(n) = A263273(2*n). %F A264984 Other identities. For all n >= 0: %F A264984 A010873(a(n)) = 2 * A000035(n) = A010673(n). %o A264984 (Scheme) (define (A264984 n) (A263273 (+ n n))) %o A264984 (Python) %o A264984 from sympy import factorint %o A264984 from sympy.ntheory.factor_ import digits %o A264984 from operator import mul %o A264984 def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3) %o A264984 def a038502(n): %o A264984 f=factorint(n) %o A264984 return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f]) %o A264984 def a038500(n): return n/a038502(n) %o A264984 def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n) %o A264984 def a(n): return a263273(2*n) # _Indranil Ghosh_, May 22 2017 %Y A264984 Cf. A000035, A010673, A010873, A263272, A263273, A264983, A264975. %K A264984 nonn %O A264984 0,2 %A A264984 _Antti Karttunen_, Dec 05 2015