This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264986 #8 May 23 2017 20:58:50 %S A264986 0,2,4,6,8,10,12,14,32,18,20,38,24,26,28,30,16,34,36,22,40,42,68,86, %T A264986 96,50,104,54,56,110,60,74,92,114,44,98,72,62,116,78,80,82,84,46,100, %U A264986 90,64,118,48,70,88,102,52,106,108,58,112,66,76,94,120,122,284,126,176,338,204,230,248,258,140,302,288 %N A264986 Even bisection of A263272; terms of A264974 doubled. %F A264986 a(n) = A263272(2*n). %F A264986 a(n) = 2 * A264974(n). %F A264986 a(n) = A263273(4*n)/2. %o A264986 (Scheme) (define (A264986 n) (A263272 (+ n n))) %o A264986 (Python) %o A264986 from sympy import factorint %o A264986 from sympy.ntheory.factor_ import digits %o A264986 from operator import mul %o A264986 def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3) %o A264986 def a038502(n): %o A264986 f=factorint(n) %o A264986 return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f]) %o A264986 def a038500(n): return n/a038502(n) %o A264986 def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n) %o A264986 def a(n): return a263273(4*n)/2 # _Indranil Ghosh_, May 23 2017 %Y A264986 Cf. A263272, A264974, A264987. %K A264986 nonn %O A264986 0,2 %A A264986 _Antti Karttunen_, Dec 05 2015