This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264990 #34 Mar 05 2025 05:25:15 %S A264990 0,1,1,2,1,1,1,2,2,3,1,2,1,1,1,2,2,2,1,1,1,2,1,1,1,2,2,3,1,2,2,3,3,4, %T A264990 2,3,1,2,2,3,2,2,1,2,2,3,1,2,1,1,1,2,2,2,1,2,2,3,2,2,2,2,2,2,3,3,1,1, %U A264990 1,2,2,2,1,1,1,2,1,1,1,2,2,3,1,2,1,1,1,2,2,2,2,2,2,2,2,2,1,1,1,2,1,1,1,2,2,3,1,2,1,1,1,2,2,2,1,1,1,2,1,1,1,2 %N A264990 a(n) = number of occurrences of a most frequent nonzero digit in factorial base representation (A007623) of n. %H A264990 Antti Karttunen, <a href="/A264990/b264990.txt">Table of n, a(n) for n = 0..10080</a> %H A264990 <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>. %F A264990 a(0) = 0; for n >= 1, a(n) = max(A257511(n), a(A257684(n))). %F A264990 Other identities. For all n >= 0: %F A264990 From _Antti Karttunen_, Aug 15 2016: (Start) %F A264990 a(n) = A275811(A225901(n)). %F A264990 a(n) = A051903(A275735(n)). %F A264990 (End) %e A264990 n A007623(n) a(n) [highest number of times any nonzero digit occurs]. %e A264990 0 = 0 0 (because no nonzero digits present) %e A264990 1 = 1 1 %e A264990 2 = 10 1 %e A264990 3 = 11 2 %e A264990 4 = 20 1 %e A264990 5 = 21 1 %e A264990 6 = 100 1 %e A264990 7 = 101 2 %e A264990 8 = 110 2 %e A264990 9 = 111 3 %e A264990 10 = 120 1 %e A264990 11 = 121 2 %e A264990 12 = 200 1 %e A264990 13 = 201 1 %e A264990 14 = 210 1 %e A264990 15 = 211 2 %e A264990 16 = 220 2 %e A264990 17 = 221 2 %e A264990 18 = 300 1 %e A264990 and for n=63 we have: %e A264990 63 = 2211 2. %t A264990 a[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; Max[Tally[Select[s, # > 0 &]][[;;,2]]]]; a[0] = 0; Array[a, 100, 0] (* _Amiram Eldar_, Jan 24 2024 *) %o A264990 (Scheme with memoization-macro definec) %o A264990 (definec (A264990 n) (if (zero? n) n (max (A257511 n) (A264990 (A257684 n))))) %o A264990 (Python) %o A264990 from sympy import prime, factorint %o A264990 from operator import mul %o A264990 import collections %o A264990 def a007623(n, p=2): return n if n<p else a007623(n//p, p+1)*10 + n%p %o A264990 def a051903(n): return 0 if n==1 else max(factorint(n).values()) %o A264990 def a275735(n): %o A264990 y=collections.Counter(map(int, list(str(a007623(n)).replace("0", "")))).most_common() %o A264990 return 1 if n==0 else reduce(mul, [prime(y[i][0])**y[i][1] for i in range(len(y))]) %o A264990 def a(n): return 0 if n==0 else a051903(a275735(n)) %o A264990 print([a(n) for n in range(201)]) # _Indranil Ghosh_, Jun 20 2017 %Y A264990 Cf. A007623, A051903, A225901, A257511, A257684, A275735, A275811. %Y A264990 Cf. A265349 (positions of terms <= 1), A265350 (positions of term > 1). %Y A264990 Cf. also A266117, A266118. %K A264990 nonn,base %O A264990 0,4 %A A264990 _Antti Karttunen_, Dec 22 2015 %E A264990 Name changed by _Antti Karttunen_, Aug 15 2016