This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265006 #61 May 07 2024 08:01:27 %S A265006 5,7,11,13,29,31,41,43,71,73,239,241,419,421,461,463,599,601,1481, %T A265006 1483,1721,1723,2549,2551,2969,2971,3539,3541,4421,4423,8009,8011, %U A265006 10301,10303,17291,17293,19181,19183,20021,20023,23561,23563,24179,24181,27059,27061,31151,31153,35531,35533 %N A265006 Twin prime pairs of the form (k^2 + k - 1, k^2 + k + 1). %C A265006 This is a subset of A002327 and A002383 taken together. Note that 3 is not a member, as the pairing (3, 5) is excluded as defined, as 3 and 5 associate to different centers. %C A265006 The corresponding n are in A088485. %C A265006 The average of each twin prime pair is an oblong number (A002378). - _Michel Marcus_, Feb 04 2017 %H A265006 Amiram Eldar, <a href="/A265006/b265006.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..3594 from G. C. Greubel) %F A265006 a(2n-1) = A088486(n). a(2n)=2+a(2n-1). %e A265006 For k = 6, k^2 + k = 6^2 + 6 = 42, and (41,43) is a twin prime pair, so 41 and 43 are in the sequence. %t A265006 {#^2 + # - 1, #^2 + # + 1} & /@ Select[Range@ 200, PrimeQ[#^2 + # - 1] && PrimeQ[#^2 + # + 1] &] // Flatten (* _Michael De Vlieger_, Nov 30 2015 *) %t A265006 Flatten[Select[Table[n^2 + n + {-1, 1}, {n, 0, 200}], And@@PrimeQ[#] &]] (* _Vincenzo Librandi_, Feb 05 2017 *) %o A265006 (PARI) genit()={my(maxx=1000);n=0;while(n<maxx,n+=1;q=n^2+n;if( isprime(q-1)&&isprime(q+1),print1(q-1,",",q+1,",")));} %o A265006 (Magma) &cat[[n^2+n-1, n^2+n+1]: n in [0..250]| IsPrime(n^2+n-1) and IsPrime(n^2+n+1)]; // _Vincenzo Librandi_, Feb 05 2017 %Y A265006 Cf. A002327, A002378, A002383, A088485, A088486, A306889. %K A265006 nonn,easy,tabf %O A265006 1,1 %A A265006 _Bill McEachen_, Nov 29 2015