A265010 Numbers which are the product of two tetrahedral numbers.
0, 1, 4, 10, 16, 20, 35, 40, 56, 80, 84, 100, 120, 140, 165, 200, 220, 224, 286, 336, 350, 364, 400, 455, 480, 560, 660, 680, 700, 816, 840, 880, 969, 1120, 1140, 1144, 1200, 1225, 1330, 1456, 1540, 1650, 1680, 1771, 1820, 1960, 2024, 2200, 2240
Offset: 1
Keywords
Examples
Contains 480=4*120, 560=1*560, 660=4*165, 680=1*680, 700=20*35, ....
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
# reuses code of A000292 isA265010 := proc(n) if n = 0 then return true; end if; for d in numtheory[divisors](n) do if isA000292(d) and isA000292(n/d) then return true; end if; end do: false; end proc: for n from 0 to 4000 do if isA265010(n) then printf("%d, ",n); end if; end do:
-
Mathematica
lim = 2240; t = Table[Binomial[n + 2, 3], {n, 0, 10^3}]; f[n_] := Select[{#, n/#} & /@ Select[Divisors[n], # <= Sqrt@ n && MemberQ[t, #] &], MemberQ[t, Last@ #] &]; Select[Range@ lim, Length@ f@ # > 0 &] (* Michael De Vlieger, Nov 30 2015 *)
Comments