cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265010 Numbers which are the product of two tetrahedral numbers.

Original entry on oeis.org

0, 1, 4, 10, 16, 20, 35, 40, 56, 80, 84, 100, 120, 140, 165, 200, 220, 224, 286, 336, 350, 364, 400, 455, 480, 560, 660, 680, 700, 816, 840, 880, 969, 1120, 1140, 1144, 1200, 1225, 1330, 1456, 1540, 1650, 1680, 1771, 1820, 1960, 2024, 2200, 2240
Offset: 1

Views

Author

R. J. Mathar, Nov 30 2015

Keywords

Comments

This is for the tetrahedral numbers A000292 what A085780 is for the triangular numbers.
The subsequence of numbers with more than one factorization starts 0, 560 (= 65*10 = 1*560), 19600 (= 560*15 = 19600*1), 28560 (=816 *35 = 7140*4), 43680, 292600, 416640, ...

Examples

			Contains 480=4*120, 560=1*560, 660=4*165, 680=1*680, 700=20*35, ....
		

Crossrefs

Programs

  • Maple
    # reuses code of A000292
    isA265010 := proc(n)
        if n = 0 then
            return true;
        end if;
        for d in numtheory[divisors](n) do
            if isA000292(d) and isA000292(n/d) then
                return true;
            end if;
        end do:
        false;
    end proc:
    for n from 0 to 4000 do
        if isA265010(n) then
            printf("%d, ",n);
        end if;
    end do:
  • Mathematica
    lim = 2240; t = Table[Binomial[n + 2, 3], {n, 0, 10^3}]; f[n_] := Select[{#, n/#} & /@ Select[Divisors[n], # <= Sqrt@ n && MemberQ[t, #] &], MemberQ[t, Last@ #] &]; Select[Range@ lim, Length@ f@ # > 0 &] (* Michael De Vlieger, Nov 30 2015 *)

Formula

{n: n = A000292(i)*A000292(j) for some i,j>=0}.