cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265012 a(n) = 10^(prime(n)-1) mod prime(n)^2.

This page as a plain text file.
%I A265012 #10 Jan 22 2022 10:13:04
%S A265012 2,1,0,8,12,53,137,286,185,378,466,1037,1518,1033,2022,637,532,794,
%T A265012 2011,3551,1169,1660,2574,3561,6597,5152,7829,4816,10356,9041,382,
%U A265012 7206,16578,17932,19073,12383,20725,11248,21377,16609,21660,21178,20820,4826,37234
%N A265012 a(n) = 10^(prime(n)-1) mod prime(n)^2.
%H A265012 Reinhard Zumkeller, <a href="/A265012/b265012.txt">Table of n, a(n) for n = 1..10000</a>
%F A265012 a(n) < A001248(n);
%F A265012 a(A049084(A045616(n))) = 1.
%e A265012 a(2) = a(93) = a(3371851) = 1;
%e A265012 prime(2) = 3; prime(93) = 487; prime(3371851) = 56598313.
%t A265012 PowerMod[10,#-1 ,#^2]&/@Prime[Range[50]] (* _Harvey P. Dale_, Feb 10 2016 *)
%o A265012 (Haskell)
%o A265012 import Math.NumberTheory.Moduli (powerMod)
%o A265012 a265012 n = powerMod 10 (p - 1) (p ^ 2) where p = a000040 n
%o A265012 (PARI) a(n) = lift(Mod(10, prime(n)^2)^(prime(n)-1)); \\ _Michel Marcus_, Jan 22 2022
%Y A265012 Cf. A045616, A049084, A001248, A000040.
%K A265012 nonn
%O A265012 1,1
%A A265012 _Reinhard Zumkeller_, Nov 30 2015