This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265020 #22 Jul 29 2024 07:13:36 %S A265020 1,0,1,0,2,0,3,3,0,4,5,0,5,15,0,6,21,16,0,7,42,25,0,8,54,68,0,9,90, %T A265020 142,0,10,110,248,125,0,11,165,409,189,0,12,195,710,496,0,13,273,1033, %U A265020 967,0,14,315,1562,2096,0,15,420,2291,3265,1296,0,16,476,3180 %N A265020 Total sum T(n,k) of number of lambda-parking functions of partitions lambda of n into exactly k distinct parts; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows. %C A265020 Differs from A265208 first at T(5,2). See example. %H A265020 Alois P. Heinz, <a href="/A265020/b265020.txt">Rows n = 0..100, flattened</a> %H A265020 R. Stanley, <a href="http://math.mit.edu/~rstan/transparencies/parking.pdf">Parking Functions</a>, 2011 %F A265020 T(A000217(n),n) = A000272(n+1). %e A265020 T(5,2) = 15 because there are two partitions of 5 into 2 distinct parts: [2,3] and [1,4]. And [2,3] has 8 lambda-parking functions: [1,1], [1,2], [1,3], [2,1], [2,2], [2,3], [3,1], [3,2] and [1,4] has 7: [1,1], [1,2], [1,3], [1,4], [2,1], [3,1], [4,1]. So [1,1], [1,2], [1,3], [2,1], [3,1] are counted twice. %e A265020 Triangle T(n,k) begins: %e A265020 00 : 1; %e A265020 01 : 0, 1; %e A265020 02 : 0, 2; %e A265020 03 : 0, 3, 3; %e A265020 04 : 0, 4, 5; %e A265020 05 : 0, 5, 15; %e A265020 06 : 0, 6, 21, 16; %e A265020 07 : 0, 7, 42, 25; %e A265020 08 : 0, 8, 54, 68; %e A265020 09 : 0, 9, 90, 142; %e A265020 10 : 0, 10, 110, 248, 125; %e A265020 11 : 0, 11, 165, 409, 189; %e A265020 12 : 0, 12, 195, 710, 496; %e A265020 13 : 0, 13, 273, 1033, 967; %e A265020 14 : 0, 14, 315, 1562, 2096; %e A265020 15 : 0, 15, 420, 2291, 3265, 1296; %e A265020 16 : 0, 16, 476, 3180, 6057, 1921; %p A265020 p:= l-> (n-> n!*LinearAlgebra[Determinant](Matrix(n, (i, j) %p A265020 -> (t->`if`(t<0, 0, l[i]^t/t!))(j-i+1))))(nops(l)): %p A265020 g:= (n, i, l)-> `if`(i*(i+1)/2<n, 0, `if`(n=0, p(l)*x^nops(l), %p A265020 g(n, i-1, l)+`if`(i>n, 0, g(n-i, i-1, [i, l[]])))): %p A265020 T:= n-> (f-> seq(coeff(f, x, i), i=0..degree(f)))(g(n$2, [])): %p A265020 seq(T(n), n=0..20); %t A265020 p[l_] := With[{n = Length[l]}, n!*Det[Table[With[{t = j - i + 1}, l[[i]]^t/t!], {i, 1, n}, {j, 1, n}]]]; %t A265020 g[n_, i_, l_] := If[i*(i + 1)/2 < n, 0, If[n == 0, p[l]*x^Length[l], g[n, i - 1, l] + If[i > n, 0, g[n - i, i - 1, Join[{i}, l]]]]]; %t A265020 T[n_] := If[n == 0, {1}, CoefficientList[g[n, n, {}], x]]; %t A265020 Table[T[n], {n, 0, 20}] // Flatten (* _Jean-François Alcover_, Jul 29 2024, after _Alois P. Heinz_ *) %Y A265020 Row sums give A265016. %Y A265020 Columns k=0-1 give: A000007, A000027. %Y A265020 Cf. A000217, A000272, A003056, A265208. %K A265020 nonn,tabf %O A265020 0,5 %A A265020 _Alois P. Heinz_, Nov 30 2015