This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265023 #16 Mar 28 2020 05:28:16 %S A265023 1,-1,2,-4,9,-22,54,-139,372,-948,2607,-7388,16058,-58957,174854, %T A265023 210448,4345025,-2008714,-165872030,-1756557123,-6144936528, %U A265023 60244093040,1164910003567,8228177887688,-10562519450714,-967088274083133,-11322641425582454,-37483806372774364 %N A265023 Second order complementary Bell numbers. %t A265023 nmax = 27; %t A265023 A = Exp[x] + O[x]^(nmax - 1); %t A265023 B = Exp[1 - Integrate[A, x]]/E; %t A265023 c = Exp[1 - Integrate[B, x]]/E; %t A265023 CoefficientList[c, x] Range[0, nmax]! (* _Jean-François Alcover_, Jul 12 2019, from PARI *) %o A265023 (Sage) # uses[bell_transform from A264428] %o A265023 def A265023_list(len): %o A265023 uno = [1]*len %o A265023 complementary_bell_numbers = [sum((-1)^n*b for (n, b) in enumerate (bell_transform(n, uno))) for n in range(len)] %o A265023 complementary_bell_numbers2 = [sum((-1)^n*b for (n, b) in enumerate (bell_transform(n, complementary_bell_numbers))) for n in range(len)] %o A265023 return complementary_bell_numbers2 %o A265023 print(A265023_list(28)) %o A265023 (PARI) %o A265023 \\ For n>28 precision has to be adapted as needed! %o A265023 A = exp('x + O('x^33) ); %o A265023 B = exp(1 - intformal(A) )/exp(1); %o A265023 C = exp(1 - intformal(B) )/exp(1); %o A265023 round(Vec(serlaplace(C))) %Y A265023 Cf. A000587 (complementary Bell numbers), A264428. %K A265023 sign %O A265023 0,3 %A A265023 _Peter Luschny_, Dec 03 2015