This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265038 #14 Dec 27 2015 09:19:56 %S A265038 1,13,63,183,401,745,1291,2019,2921,4133,5659,7443,9597,12149,15103, %T A265038 18535,22389,26729,31727,37231,43233,50001,57443,65467,74281,83853, %U A265038 94187,105419,117397,130221,144159,158927,174517,191329,209175,227927,247889,268969,291171,314691 %N A265038 Partial sums of A009927. %C A265038 Needs a b-file (not based on any conjectures, of course). - _N. J. A. Sloane_, Dec 18 2015 %H A265038 V. A. Blatov, A. P. Shevchenko, D. M. Proserpio, <a href="http://pubs.acs.org/doi/pdf/10.1021/cg500498k">Applied Topological Analysis of Crystal Structures with the Program Package ToposPro</a>, Cryst. Growth Des. 2014, 14, 3576-3586. See Table I. %F A265038 Empirical: Sum_{k=0..n} [(1903/72) + (3/8)*(-1)^k +19*KroneckerDelta[k,0] - 8*KroneckerDelta[k,1] - 12*KroneckerDelta[k,2] + ((k+1)/12)*(187*k-273) - (32*sqrt(3)/27)*((13/2)*cos((4k+1)*Pi/6) + sin(2k*Pi/3)) - (3*sqrt(26)/2)*(-1)^n*cos(k*Pi/2 + arctan(1/5)) - (3/4)*i^k*(1+(-1)^k)*(k+2)].- _G. C. Greubel_, Dec 18 2015 %F A265038 Empirical g.f.: (1 +12*x +51*x^2 +130*x^3 +243*x^4 +350*x^5 +450*x^6 +418*x^7 +327*x^8 +182*x^9 +51*x^10 +16*x^11 -7*x^12 +8*x^13 +12*x^14) / ((1 -x)^4*(1 +x)*(1 +x^2)^2*(1 +x +x^2)^2). - _Colin Barker_, Dec 19 2015 %Y A265038 Cf. A009927. %K A265038 nonn %O A265038 0,2 %A A265038 _N. J. A. Sloane_, Dec 15 2015