cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265093 a(n) = Sum_{k=0..n} q(k)^2, where q(k) = partition numbers into distinct parts (A000009).

This page as a plain text file.
%I A265093 #5 Feb 01 2016 10:05:53
%S A265093 1,2,3,7,11,20,36,61,97,161,261,405,630,954,1438,2167,3191,4635,6751,
%T A265093 9667,13763,19539,27460,38276,53160,73324,100549,137413,186697,252233,
%U A265093 339849,455449,607549,808253,1070397,1412622,1858846,2436446,3182942,4147266
%N A265093 a(n) = Sum_{k=0..n} q(k)^2, where q(k) = partition numbers into distinct parts (A000009).
%C A265093 In general, for m >= 1, Sum_{k=0..n} q(k)^m ~ 2*sqrt(3*n)/(m*Pi) * q(n)^m ~ exp(Pi*m*sqrt(n/3)) / (Pi*m * 2^(2*m-1) * 3^(m/4-1/2) * n^(3*m/4-1/2)), where q(k) is A000009(k).
%H A265093 Alois P. Heinz, <a href="/A265093/b265093.txt">Table of n, a(n) for n = 0..10000</a>
%F A265093 a(n) = Sum_{k=0..n} A000009(k)^2.
%F A265093 a(n) ~ exp(2*Pi*sqrt(n/3))/(16*Pi*n).
%t A265093 Table[Sum[PartitionsQ[k]^2, {k,0,n}], {n,0,50}]
%Y A265093 Cf. A000070, A036469, A259399.
%K A265093 nonn
%O A265093 0,2
%A A265093 _Vaclav Kotesovec_, Dec 01 2015