cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265096 a(n) = Sum_{k=0..n} p(k)*q(k), where p(k) = partition numbers (A000041) and q(k) = partition numbers into distinct parts (A000009).

This page as a plain text file.
%I A265096 #12 Jun 25 2022 01:32:51
%S A265096 1,2,4,10,20,41,85,160,292,532,952,1624,2779,4597,7567,12319,19711,
%T A265096 30997,48707,75167,115295,175487,264665,395185,587335,865371,1267311,
%U A265096 1845231,2670627,3839267,5498051,7824331,11080441,15624505,21927225,30633780,42642416
%N A265096 a(n) = Sum_{k=0..n} p(k)*q(k), where p(k) = partition numbers (A000041) and q(k) = partition numbers into distinct parts (A000009).
%F A265096 a(n) ~ (sqrt(2)-1) * exp((1+sqrt(2))*Pi*sqrt(n/3)) / (8*3^(1/4)*Pi*n^(5/4)).
%t A265096 Table[Sum[PartitionsQ[k]*PartitionsP[k], {k,0,n}], {n,0,50}]
%Y A265096 Cf. A000009, A000041, A000070, A015128, A036469.
%Y A265096 Partial sums of A304991.
%K A265096 nonn
%O A265096 0,2
%A A265096 _Vaclav Kotesovec_, Dec 01 2015