A265109 a(n) = largest k such that prime(n) + A002110(k) is prime.
0, 1, 2, 3, 3, 4, 6, 7, 8, 6, 5, 9, 8, 8, 14, 9, 16, 17, 14, 14, 16, 21, 11, 19, 14, 24, 25, 15, 18, 11, 28, 12, 8, 19, 16, 22, 35, 31, 36, 25, 31, 16, 40, 30, 23, 41, 39, 35, 10, 32, 43, 38, 24, 41, 19, 35, 23, 55, 54, 24, 53, 50, 57, 62, 48, 36, 64, 21, 45, 54
Offset: 1
Keywords
Examples
a(4) = 3 because A002110(3) + prime(4) = A002110(3) + 7 = 37 is prime.
Links
- Michel Marcus, Table of n, a(n) for n = 1..1000
Programs
-
PARI
a(n) = {my(k=1); while(k, if(ispseudoprime(prod(i=1, n-k, prime(i)) + prime(n)), return(n-k)); k++)}
-
Python
from itertools import count from sympy import isprime, prime, primorial def A002110(n): return primorial(n) if n > 0 else 1 def A265109(n): pn = prime(n) return next(k for k in range(n-1, -1, -1) if isprime(pn+A002110(k))) print([A265109(n) for n in range(1, 31)]) # Michael S. Branicky, Jan 10 2025
Formula
a(n) < n.
Comments