This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265111 #5 Dec 02 2015 16:23:55 %S A265111 1,2,3,2,5,2,3,2,7,2,3,2,5,3,2,11,2,3,2,13,2,7,2,5,3,2,17,2,3,2,19,3, %T A265111 2,5,2,7,3,2,11,2,23,2,3,2,5,2,13,5,2,3,2,7,3,2,29,3,2,5,3,2,31,2,11, %U A265111 3,2,17,2,7,5,2,3,2,37,3,2,19,2,13,3,2,5,2 %N A265111 A rearrangement of the terms of A027746 (seen as flat list) such that adjacent terms are distinct. %H A265111 Reinhard Zumkeller, <a href="/A265111/b265111.txt">Table of n, a(n) for n = 1..10000</a> %e A265111 . k | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 %e A265111 . | 1 2 3 2*2 5 2*3 7 2*2*2 3*3 2*5 11 2*2*3 13 2*7 3*5 2*2*2*2 17 %e A265111 . ----+------------------------------------------------------------------- %e A265111 . a(n)| 1 2 3 2 5 2 3 2 7 2 3 2 5 3 2 11 2 3 2 13 2 7 2 5 3 2 17 2 3 2 .. %o A265111 (Haskell) %o A265111 a265111 n = a265111_list !! (n-1) %o A265111 a265111_list = 1 : f 1 [] 0 1 where %o A265111 f u [] w x = f 1 (reverse $ a027746_row' (u * x)) w (x + 1) %o A265111 f u (v:vs) w x | v == w = f (u * v) vs w x %o A265111 | otherwise = v : f u vs v x %Y A265111 Cf. A027746, A265125 (partial products). %K A265111 nonn %O A265111 1,2 %A A265111 _Reinhard Zumkeller_, Dec 01 2015