cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A265118 Number of 3Xn arrays containing n copies of 0..3-1 with row sums equal, column sums equal and full-length antidiagonal sums equal to the short dimension sums.

Original entry on oeis.org

0, 0, 8, 6, 10, 26, 42, 70, 150, 282, 506, 1002, 1950, 3670, 7126, 13926, 26826, 52082, 101802, 198146, 386238, 755790, 1478302, 2892442, 5670210, 11122230, 21823494, 42863862, 84247842, 165655146, 325927242, 641635110, 1263690038, 2489962938
Offset: 1

Views

Author

R. H. Hardin, Dec 01 2015

Keywords

Comments

Row 3 of A265117.

Examples

			Some solutions for n=9
..0..1..0..2..1..2..1..0..2....2..1..0..1..2..1..0..2..0
..2..2..1..0..0..0..2..1..1....0..2..2..0..0..2..1..1..1
..1..0..2..1..2..1..0..2..0....1..0..1..2..1..0..2..0..2
		

Crossrefs

Cf. A265117.

Formula

G.f.: 2*(r^2-r+1)/sqrt((r-1)*(2*r-1)*(2*r^2+r+1))+2*(r^3-r^2-1) -Stefan Hollos, Mar 23 2017

A265115 Number of nX3 arrays containing 3 copies of 0..n-1 with row sums equal, column sums equal and full-length antidiagonal sums equal to the short dimension sums.

Original entry on oeis.org

1, 0, 8, 0, 16, 0, 168, 0, 1048, 0, 14814, 0, 300322, 0
Offset: 1

Views

Author

R. H. Hardin, Dec 01 2015

Keywords

Comments

Column 3 of A265117.

Examples

			Some solutions for n=7
..0..4..5....0..4..5....0..4..5....1..3..5....2..6..1....6..3..0....4..5..0
..5..1..3....6..2..1....5..0..4....5..2..2....1..4..4....0..4..5....0..6..3
..3..0..6....2..3..4....4..2..3....2..1..6....4..5..0....5..0..4....3..0..6
..6..2..1....5..4..0....3..5..1....6..0..3....0..3..6....4..2..3....6..1..2
..1..6..2....1..3..5....1..6..2....3..6..0....6..0..3....3..5..1....2..2..5
..2..3..4....6..3..0....2..1..6....0..5..4....3..1..5....1..6..2....5..3..1
..4..5..0....1..2..6....6..3..0....4..4..1....5..2..2....2..1..6....1..4..4
		

Crossrefs

Cf. A265117.

A265116 Number of nX4 arrays of permutations of 4 copies of 0..n-1 with row sums equal, column sums equal and full-length antidiagonal sums equal to the short dimension sums.

Original entry on oeis.org

1, 0, 6, 624, 6592, 126764, 3493730
Offset: 1

Views

Author

R. H. Hardin, Dec 01 2015

Keywords

Comments

Column 4 of A265117.

Examples

			Some solutions for n=5
..1..1..4..2....1..4..1..2....2..4..0..2....2..0..2..4....1..4..3..0
..0..4..0..4....4..1..3..0....2..3..3..0....1..4..1..2....0..3..3..2
..3..3..0..2....0..0..4..4....0..1..3..4....3..2..3..0....2..1..1..4
..3..1..2..2....3..2..2..1....2..1..1..4....1..0..4..3....4..2..2..0
..3..1..4..0....2..3..0..3....4..1..3..0....3..4..0..1....3..0..1..4
		

Crossrefs

Cf. A265117.

A265119 Number of 4Xn arrays containing n copies of 0..4-1 with row sums equal, column sums equal and full-length antidiagonal sums equal to the short dimension sums.

Original entry on oeis.org

0, 0, 0, 624, 0, 10110, 0, 300744, 0, 12012024, 0, 606876964, 0, 33691227158, 0, 1960112974014, 0
Offset: 1

Views

Author

R. H. Hardin, Dec 01 2015

Keywords

Comments

Row 4 of A265117.

Examples

			Some solutions for n=6
..1..2..0..2..3..1....0..3..2..0..3..1....0..1..2..0..3..3....0..1..2..0..3..3
..2..1..1..1..2..2....0..2..3..1..2..1....1..3..2..2..1..0....1..2..3..1..0..2
..3..3..2..0..1..0....3..0..1..3..0..2....3..2..1..1..2..0....3..1..0..2..3..0
..0..0..3..3..0..3....3..1..0..2..1..2....2..0..1..3..0..3....2..2..1..3..0..1
		

Crossrefs

Cf. A265117.
Showing 1-4 of 4 results.