This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265144 #17 Aug 21 2021 05:18:30 %S A265144 1,1,2,1,3,3,4,1,4,5,5,4,6,7,8,1,7,7,8,7,12,9,9,5,9,11,8,10,10,16,11, %T A265144 1,16,13,15,11,12,15,20,9,13,25,14,13,20,17,15,6,16,19,24,16,16,15,21, %U A265144 13,28,19,17,27,18,21,32,1,27,34,19,19,32,34,20,16 %N A265144 Number of lambda-parking functions of the unique partition lambda with encoding n = Product_{i:lambda} prime(i). %H A265144 Alois P. Heinz, <a href="/A265144/b265144.txt">Table of n, a(n) for n = 1..20000</a> %H A265144 Richard P. Stanley, <a href="http://math.mit.edu/~rstan/transparencies/parking.pdf">Parking Functions</a>, 2011. %e A265144 n = 18 = 2*3*3 = prime(1)*prime(2)*prime(2) encodes partition [1,2,2] having seven lambda-parking functions: [1,1,1], [1,1,2], [1,2,1], [2,1,1], [1,2,2], [2,1,2], [2,2,1], thus a(18) = 7. %p A265144 with(numtheory): %p A265144 p:= l-> (n-> n!*LinearAlgebra[Determinant](Matrix(n, (i, j) %p A265144 -> (t->`if`(t<0, 0, l[i]^t/t!))(j-i+1))))(nops(l)): %p A265144 a:= n-> p(sort([seq(pi(i[1])$i[2], i=ifactors(n)[2])])): %p A265144 seq(a(n), n=1..100); %t A265144 p[l_] := Function[n, n! Det[Table[Function[t, If[t<0, 0, %t A265144 l[[i]]^t/t!]][j-i+1], {i, n}, {j, n}]]][Length[l]]; %t A265144 a[n_] := If[n==1, 1, p[Sort[Flatten[Table[Table[ %t A265144 PrimePi[i[[1]]], {i[[2]]}], {i, FactorInteger[n]}]]]]]; %t A265144 Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Aug 21 2021, after _Alois P. Heinz_ *) %Y A265144 Cf. A000040, A000041, A215366, A265145. %K A265144 nonn,look %O A265144 1,3 %A A265144 _Alois P. Heinz_, Dec 02 2015