This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265146 #24 Mar 23 2017 04:15:36 %S A265146 1,2,1,2,3,1,3,4,1,2,3,2,3,1,4,5,1,2,4,6,1,5,2,4,1,2,3,4,7,1,3,4,8,1, %T A265146 2,5,2,5,1,6,9,1,2,3,5,3,4,1,7,2,3,4,1,2,6,10,1,3,5,11,1,2,3,4,5,2,6, %U A265146 1,8,3,5,1,2,4,5,12,1,9,2,7,1,2,3,6,13,1 %N A265146 Triangle T(n,k) in which n-th row lists the parts i_1<i_2<...<i_m of the unique strict partition with encoding n = Product_{j=1..m} prime(i_j-j+1); n>=1, 1<=k<=A001222(n). %C A265146 A strict partition is a partition into distinct parts. %C A265146 Row n=1 contains the parts of the empty partition, so it is empty. %H A265146 Alois P. Heinz, <a href="/A265146/b265146.txt">Rows n = 1..1000, flattened</a> %F A265146 T(prime(n),1) = n. %e A265146 n = 12 = 2*2*3 = prime(1)*prime(1)*prime(2) encodes strict partition [1,2,4]. %e A265146 Triangle T(n,k) begins: %e A265146 01 : ; %e A265146 02 : 1; %e A265146 03 : 2; %e A265146 04 : 1, 2; %e A265146 05 : 3; %e A265146 06 : 1, 3; %e A265146 07 : 4; %e A265146 08 : 1, 2, 3; %e A265146 09 : 2, 3; %e A265146 10 : 1, 4; %e A265146 11 : 5; %e A265146 12 : 1, 2, 4; %e A265146 13 : 6; %e A265146 14 : 1, 5; %e A265146 15 : 2, 4; %e A265146 16 : 1, 2, 3, 4; %p A265146 T:= n-> ((l-> seq(l[j]+j-1, j=1..nops(l)))(sort([seq( %p A265146 numtheory[pi](i[1])$i[2], i=ifactors(n)[2])]))): %p A265146 seq(T(n), n=1..100); %t A265146 T[n_] := Function[l, Table[l[[j]]+j-1, {j, 1, Length[l]}]][Sort[ Flatten[ Table[ Array[ PrimePi[i[[1]]]&, i[[2]]], {i, FactorInteger[n]}]]]]; %t A265146 Table[T[n], {n, 1, 100}] // Flatten // Rest (* _Jean-François Alcover_, Mar 23 2017, translated from Maple *) %Y A265146 Column k=1 gives A055396 (for n>1). %Y A265146 Last terms of rows give A252464 (for n>1). %Y A265146 Row sums give A266475. %Y A265146 Cf. A000009, A000040, A001222, A112798, A246688, A265145. %K A265146 nonn,tabf %O A265146 1,2 %A A265146 _Alois P. Heinz_, Dec 02 2015