cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265150 a(1) = 10, a(n) = smallest number > a(n-1) such that the concatenation of a(n-1) and a(n) is a square.

Original entry on oeis.org

10, 24, 336, 400, 689, 5876, 7556, 8249, 53284, 335556, 4512400, 25092921, 165947209, 496186596, 3891489129, 6897736129, 10128495225, 18547234816, 81770476100, 203672467856, 909690622025, 6063906517681, 14045408555225, 50912872680100, 145763131189824, 180798422222500
Offset: 1

Views

Author

Robert G. Wilson v, Dec 02 2015

Keywords

Examples

			a(3) is 336 since it is the least number greater than a(2)=24 which concatenated with 24 forms a perfect square, i.e., 24336 = 156^2.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{x = n, d = 1 + Floor@ Log10@ n}, q = (Floor@ Sqrt[(10^d + 1) x] + 1)^2; If[q < (10^d) (x + 1), Mod[q, 10^d], Mod[(Floor@ Sqrt[(10^d)(10x + 1) - 1] + 1)^2, 10^(d + 1)] ]]; NestList[f, 10, 25] (* after the algorithm of David W. Wilson in A090566 *)