cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265156 Decimal representation of the n-th iteration of the "Rule 73" elementary cellular automaton starting with a single ON (black) cell.

This page as a plain text file.
%I A265156 #14 Feb 16 2025 08:33:27
%S A265156 1,0,21,0,381,136,5189,544,94493,43176,1311749,254944,24400989,
%T A265156 10617384,336720133,59386080,6262162781,2688081960,86425034501,
%U A265156 15602819808,1602324730205,689510189096,22111597905669,4029655427808,410123492458845,176987155003432,5661487452198661,1029729726008032,104994856690270557,45284638610044968
%N A265156 Decimal representation of the n-th iteration of the "Rule 73" elementary cellular automaton starting with a single ON (black) cell.
%D A265156 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
%H A265156 Robert Price, <a href="/A265156/b265156.txt">Table of n, a(n) for n = 0..999</a>
%H A265156 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A265156 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A265156 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%e A265156 From _Michael De Vlieger_, Dec 04 2015: (Start)
%e A265156 First 12 rows, showing surrounding context at left, cells generated by the initial cell at center, and the decimal equivalent at right where leading zeros are lost:
%e A265156 0                           1                         ->         1
%e A265156 1                         0 0 0                       ->         0
%e A265156 0                       1 0 1 0 1                     ->        21
%e A265156 1                     0 0 0 0 0 0 0                   ->         0
%e A265156 0                   1 0 1 1 1 1 1 0 1                 ->       381
%e A265156 1                 0 0 0 1 0 0 0 1 0 0 0               ->       136
%e A265156 0               1 0 1 0 0 0 1 0 0 0 1 0 1             ->      5189
%e A265156 1             0 0 0 0 0 1 0 0 0 1 0 0 0 0 0           ->       544
%e A265156 0           1 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 1         ->     94493
%e A265156 1         0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0       ->     43176
%e A265156 0       1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1     ->   1311749
%e A265156 1     0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0   ->    254944
%e A265156 0   1 0 1 1 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 1 1 0 1 ->  24400989
%e A265156 (End)
%t A265156 rule = 73; rows = 30; Table[FromDigits[Table[Take[CellularAutomaton[rule,{{1},0}, rows-1, {All,All}][[k]], {rows-k+1, rows+k-1}], {k,1,rows}][[k]],2], {k,1,rows}]
%Y A265156 Cf. A245549, A262448, A265122.
%K A265156 nonn,easy
%O A265156 0,3
%A A265156 _Robert Price_, Dec 02 2015