A265167 Number of n X 2 arrays containing 2 copies of 0..n-1 with no equal horizontal or vertical neighbors and new values introduced sequentially from 0.
0, 1, 2, 21, 186, 2113, 27856, 422481, 7241480, 138478561, 2923183474, 67520866405, 1694065383154, 45878853274945, 1333966056696224, 41446945223914337, 1370476678395567376, 48051281596087884289
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1 ..2..3....2..3....2..3....2..0....2..3....2..3....2..3....2..3....2..3....2..3 ..0..1....3..2....0..2....1..3....0..1....3..0....3..1....1..2....3..2....0..2 ..2..3....1..0....3..1....3..2....3..2....2..1....0..2....0..3....0..1....1..3
Links
- D. Young, The Number of Domino Matchings in the Game of Memory, Journal of Integer Sequences, Vol. 21 (2018), Article 18.8.1.
- Donovan Young, Generating Functions for Domino Matchings in the 2 * k Game of Memory, arXiv:1905.13165 [math.CO], 2019. Also in J. Int. Seq., Vol. 22 (2019), Article 19.8.7.
Formula
a(n) = Sum_{k=0..n} (-1)^k*(2*n-2*k-1)!! * A046741(n,k) where and 0!! = (-1)!! = 1; proved by inclusion-exclusion, see [Young].
Comments