This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265188 #35 Sep 08 2022 08:46:14 %S A265188 0,1,5,6,10,11,12,16,17,21,22,23,27,28,32,33,34,38,39,43,44,45,49,50, %T A265188 54,55,56,60,61,65,66,67,71,72,76,77,78,82,83,87,88,89,93,94,98,99, %U A265188 100,104,105,109,110,111,115,116,120,121,122,126,127,131,132,133,137,138,142 %N A265188 Nonnegative m for which 3*floor(m^2/11) = floor(3*m^2/11). %C A265188 See the second comment in A265187. %C A265188 Also, nonnegative m congruent to 0, 1, 5, 6 or 10 (mod 11). %C A265188 Primes in sequence: 5, 11, 17, 23, 43, 61, 67, 71, 83, 89, 109, 127, ... %H A265188 Bruno Berselli, <a href="/A265188/b265188.txt">Table of n, a(n) for n = 1..1000</a> %H A265188 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,1,-1). %F A265188 G.f.: x^2*(1 + 4*x + x^2 + 4*x^3 + x^4)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4)). %F A265188 a(n) = a(n-1) + a(n-5) - a(n-6), n>6. %t A265188 Select[Range[0, 150], 3 Floor[#^2/11] == Floor[3 #^2/11] &] %t A265188 Select[Range[0, 150], MemberQ[{0, 1, 5, 6, 10}, Mod[#, 11]] &] %t A265188 LinearRecurrence[{1, 0, 0, 0, 1, -1}, {0, 1, 5, 6, 10, 11}, 70] %o A265188 (Sage) [n for n in (0..150) if 3*floor(n^2/11) == floor(3*n^2/11)] %o A265188 (Magma) [n: n in [0..150] | 3*Floor(n^2/11) eq Floor(3*n^2/11)]; %o A265188 (PARI) is(n) = 3*(n^2\11) == (3*n^2)\11 \\ _Anders Hellström_, Dec 05 2015 %o A265188 (PARI) concat(0, Vec(x^2*(1 + 4*x + x^2 + 4*x^3 + x^4)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4)) + O(x^100))) \\ _Michel Marcus_, Dec 05 2015 %Y A265188 Cf. A265187. %Y A265188 Cf. similar sequences provided by 3*floor(n^2/h) = floor(3*n^2/h): A005843 (h=2), A008585 (h=3), A001477 (h=4), A008854 (h=5), A047266 (h=6), A047299 (h=7), A042965 (h=8), A265227 (h=9), A054967 (h=10), this sequence (h=11), A047266 (h=12). %K A265188 nonn,easy %O A265188 1,3 %A A265188 _Bruno Berselli_, Dec 04 2015