This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265189 #23 Feb 16 2025 08:33:27 %S A265189 69,46,23,6,138,70,30,21,5,105,132,33,11,4,-132,138,92,46,12,276,140, %T A265189 60,42,10,210,153,136,72,17,306,207,138,69,18,414,210,90,63,15,315, %U A265189 216,135,24,10,-135,238,119,102,21,357,252,63,28,9,0 %N A265189 Soddy circles: the two circles tangent to each of three mutually tangent circles. %C A265189 For any three mutually tangent circles (with radii a, b, and c), one can construct a fourth circle (the inner Soddy circle, with radius d) that is mutually tangent internally to the three circles, and a fifth circle (the outer Soddy circle, with radius e) that is mutually tangent externally to the three circles. For this sequence all five radii have integral lengths. %C A265189 The sequence is an array of 5-tuples (a,b,c,d,e) ordered by increasing values of a, with a > b > c. %C A265189 A positive value for the outer Soddy circle indicates that it contains the three circles; a negative value indicates that it is exterior to the three circles; a value of 0 indicates that it has an infinite radius, that is, it is a straight line. %H A265189 Colin Barker, <a href="/A265189/b265189.txt">Table of n, a(n) for n = 1..1000</a> %H A265189 Kival Ngaokrajang, <a href="/A265189/a265189.pdf">Illustration of a(1) - a(5), a(41) - a(45) and a(51) - a(55)</a> %H A265189 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SoddyCircles.html">Soddy Circles</a> %H A265189 Wikipedia, <a href="http://en.wikipedia.org/wiki/Descartes%27_theorem">Descartes' theorem</a> %o A265189 (PARI) %o A265189 soddy(amax) = { %o A265189 my(L=List(), abc, t, u); %o A265189 for(a=1, amax, %o A265189 for(b=1, a-1, %o A265189 for(c=1, b-1, %o A265189 abc=a*b*c; %o A265189 if(issquare(abc*(a+b+c), &t), %o A265189 u=a*b+a*c+b*c; %o A265189 if(abc%(u+2*t) == 0, %o A265189 if(u-2*t != 0, %o A265189 if(abc%(u-2*t) == 0, %o A265189 listput(L, [a,b,c,abc\(u+2*t),-abc\(u-2*t)]) %o A265189 ) %o A265189 , %o A265189 listput(L, [a,b,c,abc\(u+2*t),0]) %o A265189 ) %o A265189 ) %o A265189 ) %o A265189 ) %o A265189 ) %o A265189 ); %o A265189 Vec(L) %o A265189 } %o A265189 soddy(253) %Y A265189 Cf. A256694. %Y A265189 See also the many sequences arising from Apollonian circle packing: A135849, A137246, A154636, etc. %Y A265189 Also the sequences related to Soddy's circle packings: A046159, A046160, A062536, etc. %K A265189 sign,tabf %O A265189 1,1 %A A265189 _Colin Barker_, Dec 04 2015