This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265200 #14 Oct 19 2023 11:26:47 %S A265200 8,10,11,13,16,19,20,22,37,38,47,73,92,94,100,218,241,284,482,541,736, %T A265200 787,829,916,1147,1312,1856,1928,2035,3134,4958,5503,8042,16898,16987, %U A265200 24548,25076,35086 %N A265200 Numbers n such that n!3 + 3^7 is prime, where n!3 = n!!! is a triple factorial number (A007661). %C A265200 Corresponding primes are: 2267, 2467, 3067, 5827, 60427, 1108747, 4190987, 24346507, 664565853954187, ... %C A265200 a(39) > 50000. %C A265200 Terms > 38 correspond to probable primes. %H A265200 Henri & Renaud Lifchitz, <a href="http://www.primenumbers.net/prptop/searchform.php?form=n!3+2187&action=Search">PRP Records. Search for n!3+2187.</a> %H A265200 Joe McLean, <a href="http://web.archive.org/web/20091027034731/http://uk.geocities.com/nassarawa%40btinternet.com/probprim2.htm">Interesting Sources of Probable Primes</a> %H A265200 OpenPFGW Project, <a href="http://sourceforge.net/projects/openpfgw/">Primality Tester</a> %e A265200 11!3 + 3^7 = 11*8*5*2 + 2187 = 3067 is prime, so 11 is in the sequence. %t A265200 MultiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*MultiFactorial[n - k, k]]]; %t A265200 Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 3] + 3^7] &] %t A265200 Select[Range[35100],PrimeQ[Times@@Range[#,1,-3]+2187]&] (* _Harvey P. Dale_, Oct 19 2023 *) %o A265200 (PARI) tf(n) = prod(i=0, (n-1)\3, n-3*i); %o A265200 for(n=1, 1e4, if(ispseudoprime(tf(n) + 3^7), print1(n , ", "))) \\ _Altug Alkan_, Dec 04 2015 %Y A265200 Cf. A007661, A037082, A084438, A123910, A242994, A261145. %K A265200 nonn,more %O A265200 1,1 %A A265200 _Robert Price_, Dec 04 2015