This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265208 #29 Feb 02 2017 10:02:07 %S A265208 1,0,1,0,2,0,3,3,0,4,5,0,5,10,0,6,14,16,0,7,21,25,0,8,27,43,0,9,36,74, %T A265208 0,10,44,107,125,0,11,55,146,189,0,12,65,207,307,0,13,78,267,471,0,14, %U A265208 90,342,786,0,15,105,436,1058,1296,0,16,119,538,1490,1921 %N A265208 Total number T(n,k) of lambda-parking functions induced by all partitions of n into exactly k distinct parts; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows. %C A265208 Differs from A265020 first at T(5,2). See example. %H A265208 Alois P. Heinz, <a href="/A265208/b265208.txt">Rows n = 0..400, flattened</a> %H A265208 R. Stanley, <a href="http://math.mit.edu/~rstan/transparencies/parking.pdf">Parking Functions</a>, 2011 %F A265208 T(A000217(n),n) = A000272(n+1). %e A265208 T(5,2) = 10: There are two partitions of 5 into 2 distinct parts: [2,3], [1,4]. Together they have 10 lambda-parking functions: [1,1], [1,2], [1,3], [1,4], [2,1], [2,2], [2,3], [3,1], [3,2], [4,1]. Here [1,1], [1,2], [1,3], [2,1], [3,1] are induced by both partitions. But they are counted only once. %e A265208 T(6,1) = 6: [1], [2], [3], [4], [5], [6]. %e A265208 T(6,2) = 14: [1,1], [1,2], [1,3], [1,4], [1,5], [2,1], [2,2], [2,3], [2,4], [3,1], [3,2], [4,1], [4,2], [5,1]. %e A265208 T(6,3) = 16: [1,1,1], [1,1,2], [1,1,3], [1,2,1], [1,2,2], [1,2,3], [1,3,1], [1,3,2], [2,1,1], [2,1,2], [2,1,3], [2,2,1], [2,3,1], [3,1,1], [3,1,2], [3,2,1]. %e A265208 Triangle T(n,k) begins: %e A265208 00 : 1; %e A265208 01 : 0, 1; %e A265208 02 : 0, 2; %e A265208 03 : 0, 3, 3; %e A265208 04 : 0, 4, 5; %e A265208 05 : 0, 5, 10; %e A265208 06 : 0, 6, 14, 16; %e A265208 07 : 0, 7, 21, 25; %e A265208 08 : 0, 8, 27, 43; %e A265208 09 : 0, 9, 36, 74; %e A265208 10 : 0, 10, 44, 107, 125; %e A265208 11 : 0, 11, 55, 146, 189; %e A265208 12 : 0, 12, 65, 207, 307; %e A265208 13 : 0, 13, 78, 267, 471; %e A265208 14 : 0, 14, 90, 342, 786; %e A265208 15 : 0, 15, 105, 436, 1058, 1296; %e A265208 16 : 0, 16, 119, 538, 1490, 1921; %p A265208 b:= proc(p, g, n, i, t) option remember; `if`(g=0, 0, p!/g!*x^p)+ %p A265208 `if`(n<t, 0, add(b(p+1, `if`(i=j, g+1, 1), n-max(j, t), j, %p A265208 max(j, t)+1)/`if`(i=j, 1, g!), j=i..n)) %p A265208 end: %p A265208 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))( %p A265208 `if`(n=0, 1, b(0$2, n, 1$2))): %p A265208 seq(T(n), n=0..25); %t A265208 b[p_, g_, n_, i_, t_] := b[p, g, n, i, t] = If[g==0, 0, p!/g!*x^p] + If[n<t, 0, Sum[b[p+1, If[i==j, g+1, 1], n-Max[j, t], j, Max[j, t]+1] / If[i==j, 1, g!], {j, i, n}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][If[n==0, 1, b[0, 0, n, 1, 1]]]; Table[T[n], {n, 0, 25}] // Flatten (* _Jean-François Alcover_, Feb 02 2017, translated from Maple *) %Y A265208 Columns k=0-2 give: A000007, A000027, A176222(n+1). %Y A265208 Row sums give A265202. %Y A265208 Cf. A000217, A000272, A003056, A206735 (the same for general partitions), A265020, A265145. %K A265208 nonn,tabf %O A265208 0,5 %A A265208 _Alois P. Heinz_, Dec 04 2015