cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265211 Squares that become prime when their rightmost digit is removed.

This page as a plain text file.
%I A265211 #14 Sep 08 2022 08:46:14
%S A265211 25,36,196,676,1936,2116,3136,4096,5476,5776,7396,8836,11236,21316,
%T A265211 23716,26896,42436,51076,55696,59536,64516,65536,75076,81796,87616,
%U A265211 92416,98596,106276,118336,119716,132496,179776,190096,198916,206116,215296,256036,274576,287296
%N A265211 Squares that become prime when their rightmost digit is removed.
%C A265211 All the terms in this sequence, except a(1) end in digit 6.
%C A265211 All the terms except a(2) are congruent to 1 (mod 3).
%C A265211 All terms except a(1) are of the form 10*p+6 where p is a prime of the form 10*x^2 + 8*x + 1 or 10*x^2 + 12*x + 3. The Bunyakovsky conjecture implies that there are infinitely many of both of these types. - _Robert Israel_, Jan 12 2016
%H A265211 K. D. Bajpai, <a href="/A265211/b265211.txt">Table of n, a(n) for n = 1..10000</a>
%H A265211 Wikipedia, <a href="https://en.wikipedia.org/wiki/Bunyakovsky_conjecture">Bunyakovsky conjecture</a>.
%e A265211 196 = 14^2 becomes the prime 19 when its rightmost digit is removed.
%e A265211 3136 = 56^2 becomes the prime 313 when its rightmost digit is removed.
%p A265211 select(t -> isprime(floor(t/10)), [seq(i^2, i=1..1000)]); # _Robert Israel_, Jan 12 2016
%t A265211 A265211 = {}; Do[k = n^2; If[PrimeQ[Floor[k/10]], AppendTo[A265211 , k]], {n, 1500}]; A265211
%t A265211 Select[Range[540]^2,PrimeQ[FromDigits[Most[IntegerDigits[#]]]]&] (* _Harvey P. Dale_, Aug 02 2016 *)
%o A265211 (PARI) for(n=1,1000, k=n^2; if(isprime(k\10), print1(k, ", ")));
%o A265211 (Magma) [k: n in [1..100] | IsPrime(Floor(k/10)) where k is n^2];
%Y A265211 Cf. A000290, A225873, A225885, A226354, A226531.
%K A265211 nonn,base,easy
%O A265211 1,1
%A A265211 _K. D. Bajpai_, Dec 05 2015