This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265236 #7 Dec 06 2015 10:31:00 %S A265236 1,1,8,3,13,12,18,5,19,17,18,20,31,26,28,7,26,23,23,26,31,22,32,28,47, %T A265236 40,38,34,49,40,38,9,34,30,29,31,31,31,38,34,47,39,28,34,53,40,46,38, %U A265236 66,55,54,48,59,46,46,48,75,62,58,52,67,58,48,11,43,38 %N A265236 Number of solutions to the equation A x B = C, where A, B and C are nonnegative numbers appearing as (contiguous) substrings of the binary representation of n. %C A265236 A, B and C are allowed to be zero, in contrast to A265008; %C A265236 a(A000225(n)) = A265008(A000225(n)); %C A265236 a(A062289(n)) != A265008(A062289(n)). %H A265236 Reinhard Zumkeller, <a href="/A265236/b265236.txt">Table of n, a(n) for n = 0..10000</a> %F A265236 For n > 0: a(n) = A265008(n) + A043545(n) * (2*A078822(n) - 1). %e A265236 . n | A007088 | A119709 | a | %e A265236 . ---+---------+-------------+----+------------------------------------- %e A265236 . 2 | 10 | [0,1,2] | 8 = #{(0,0,0), (0,1,0), (0,2,0), (1,0,0), %e A265236 . | | | (2,0,0), (1,1,1), (1,2,2), (2,1,2)} %e A265236 . 3 | 11 | [1,3] | 3 = #{(1,1,1), (1,3,3), (3,1,3)} %e A265236 . 4 | 100 | [0,1,2,4] | 13 = #{(0,0,0), (0,1,0), (0,2,0), (0,4,0), %e A265236 . | | | (1,0,0), (2,0,0), (4,0,0), (1,1,1), %e A265236 . | | | (1,2,2), (2,1,2), (1,4,4), (2,2,4), %e A265236 . | | | (4,1,4)} %e A265236 . 5 | 101 | [0,1,2,5] | 12 = #{(0,0,0), (0,1,0), (0,2,0), (0,5,0), %e A265236 . | | | (1,0,0), (2,0,0), (5,0,0), (1,1,1), %e A265236 . | | | (1,2,2), (2,1,2), (1,5,5), (5,1,5)} %e A265236 . 6 | 110 | [0,1,2,3,6] | 18 = #{(0,0,0), (0,1,0), (0,2,0), (0,3,0), %e A265236 . | | | (0,6,0), (1,0,0), (2,0,0), (3,0,0), %e A265236 . | | | (6,0,0), (1,1,1), (1,2,2), (2,1,2), %e A265236 . | | | (1,3,3), (3,1,3), (1,6,6), (2,3,6), %e A265236 . | | | (3,2,6), (6,1,6)} %e A265236 . 7 | 111 | [1,3,7] |≈ 5 = #{(1,1,1), (1,3,3), (3,1,3), (1,7,7), %e A265236 . | | | (7,1,7)} . %o A265236 (Haskell) %o A265236 a265236 n = length [() | let cs = a119709_row n, a <- cs, b <- cs, c <- cs, %o A265236 a * b == c || c == 0 && a * b == 0] %Y A265236 Cf. A007088, A119709, A265008, A265183 (decimal case), A000225, A062289, A043545, A078822. %K A265236 nonn %O A265236 0,3 %A A265236 _Reinhard Zumkeller_, Dec 06 2015 %E A265236 Suggested by _N. J. A. Sloane_.