cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265237 Carmichael numbers (A002997) that are the sum of two squares.

This page as a plain text file.
%I A265237 #45 Feb 16 2025 08:33:27
%S A265237 1105,2465,10585,29341,46657,115921,162401,252601,278545,294409,
%T A265237 314821,410041,488881,530881,552721,1461241,1909001,2433601,3224065,
%U A265237 3581761,4335241,5148001,5310721,5444489,5632705,6054985,6189121,7207201,7519441,8134561,8355841
%N A265237 Carmichael numbers (A002997) that are the sum of two squares.
%C A265237 Carmichael numbers that are the sum of two distinct nonzero squares.
%C A265237 29341 is the first term for which neither of the squares can be the square of a prime.
%C A265237 Carmichael numbers that are not the sum of two squares start 561, 1729, 2821, 6601, 8911, 15841, ...
%C A265237 A Carmichael number m is a sum of two squares if and only if p == 1 (mod m) for every prime p|m. Observation, numerically checked by _Amiram Eldar_: the first 13 terms of this sequence are odd composites m such that m | EulerNumber(m-1) (A122045). - _Thomas Ordowski_, Mar 01 2020
%H A265237 Amiram Eldar, <a href="/A265237/b265237.txt">Table of n, a(n) for n = 1..10000</a>
%H A265237 G. Tarry, I. Franel, A. Korselt, and G. Vacca. <a href="https://oeis.org/wiki/File:Probl%C3%A8me_chinois.pdf">Problème chinois</a>. L'intermédiaire des mathématiciens 6 (1899), pp. 142-144.
%H A265237 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CarmichaelNumber.html">Carmichael Number</a>
%H A265237 <a href="/index/Ca#Carmichael">Index entries for sequences related to Carmichael numbers</a>
%e A265237 1105 is a term because 1105 = 23^2 + 24^2.
%e A265237 2465 is a term because 2465 = 41^2 + 28^2.
%e A265237 10585 is a term because 10585 = 37^2 + 96^2.
%t A265237 t = Cases[Range[1, 10^7, 2], n_ /; Mod[n, CarmichaelLambda@ n] == 1 && ! PrimeQ@ n]; Select[t, SquaresR[2, #] > 0 &] (* _Michael De Vlieger_, Dec 06 2015, after _Artur Jasinski_ at A002997 *)
%o A265237 (PARI) is(n)=if(n<5, return(0)); my(f=factor(n)%4); if(vecmin(f[, 1])>1, return(0)); for(i=1, #f[, 1], if(f[i, 1]==3 && f[i, 2]%2, return(0))); 1
%o A265237 is_c(n)={my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1}
%o A265237 for(n=1, 1e7, if(is(n)&&is_c(n), print1(n, ", ")))
%Y A265237 Cf. A002997, A004431, A122045.
%K A265237 nonn
%O A265237 1,1
%A A265237 _Altug Alkan_, Dec 06 2015