This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265281 #25 Feb 16 2025 08:33:27 %S A265281 1,7,19,123,275,1915,4627,32379,67347,463739,1276435,8001147,18245395, %T A265281 124220283,309475859,2134808187,4354074387,30225757051,82642024979, %U A265281 530573137531,1175676118803,8199373878139,19977819994643,139441424012923,286691477808915 %N A265281 Decimal representation of the n-th iteration of the "Rule 86" elementary cellular automaton starting with a single ON (black) cell. %C A265281 Iterates of A269161 starting from a(0) = 1. - _Antti Karttunen_, Feb 20 2016 %C A265281 Also, the decimal representation of the n-th generation of the "Rule 859583292" 5-neighbors elementary cellular automaton starting with a single ON (black) cell. - _Philipp O. Tsvetkov_, Jul 17 2019 %D A265281 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55. %H A265281 Robert Price, <a href="/A265281/b265281.txt">Table of n, a(n) for n = 0..999</a> %H A265281 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a> %H A265281 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %H A265281 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a> %F A265281 From _Antti Karttunen_, Feb 20 2016: (Start) %F A265281 a(0) = 1, for n >= 1, a(n) = A269161(a(n-1)). %F A265281 a(n) = A030101(A110240(n)). [The rule 86 is the mirror image of the rule 30.] %F A265281 (End) %t A265281 rule = 86; rows = 30; Table[FromDigits[Table[Take[CellularAutomaton[rule,{{1},0}, rows-1, {All,All}][[k]], {rows-k+1, rows+k-1}], {k,1,rows}][[k]],2], {k,1,rows}] %o A265281 (Scheme, with memoization-macro definec) %o A265281 (definec (A265281 n) (if (zero? n) 1 (A269161 (A265281 (- n 1))))) %o A265281 ;; _Antti Karttunen_, Feb 20 2016 %Y A265281 Cf. A030101, A071032, A265280, A269161. %Y A265281 Cf. also A110240. %K A265281 nonn,easy %O A265281 0,2 %A A265281 _Robert Price_, Dec 06 2015