A265310 Least positive k such that the product of divisors of n (A007955) divides k!.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 9, 13, 14, 10, 12, 17, 15, 19, 15, 14, 22, 23, 16, 15, 26, 15, 21, 29, 20, 31, 16, 22, 34, 14, 21, 37, 38, 26, 20, 41, 28, 43, 33, 15, 46, 47, 24, 21, 25, 34, 39, 53, 27, 22, 28, 38, 58, 59, 25, 61, 62, 21, 24, 26, 44, 67, 51, 46, 28, 71, 27, 73
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A007955.
Programs
-
Maple
A265310:= proc(n) local F,f,tau,a,p,k; F:= ifactors(n)[2]; tau:= mul(1+f[2],f=F); k:= 1; for f in F do a:= f[2]*tau/2; p:= f[1]; while add(floor(k/p^j),j=1..ilog[p](k)) < a do k:= p*(1+floor(k/p)) od; od; k end proc: map(A265310, [$1..100]); # Robert Israel, Dec 07 2015
-
Mathematica
Table[k = 1; While[! Divisible[k!, Times @@ Divisors@ n], k++]; k, {n, 73}] (* Michael De Vlieger, Dec 06 2015 *)
-
PARI
a007955(n) = if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2)); a(n) = {k=1; while(k, if(k! % a007955(n)==0, return(k)); k++)} vector(100, n, a(n)) \\ Altug Alkan, Dec 06 2015
Comments