This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265312 #30 Mar 28 2020 10:58:48 %S A265312 1,1,1,1,1,1,1,1,2,1,1,1,2,5,1,1,1,2,6,15,1,1,1,2,6,23,52,1,1,1,2,6, %T A265312 24,106,203,1,1,1,2,6,24,119,568,877,1,1,1,2,6,24,120,700,3459,4140,1, %U A265312 1,1,2,6,24,120,719,4748,23544,21147,1,1,1,2,6,24,120,720,5013,36403,176850,115975,1 %N A265312 Square array read by ascending antidiagonals, Bell numbers iterated by the Bell transform. %H A265312 Alois P. Heinz, <a href="/A265312/b265312.txt">Antidiagonals n = 0..140, flattened</a> %H A265312 Peter Luschny, <a href="https://oeis.org/wiki/User:Peter_Luschny/BellTransform">The Bell transform</a> %e A265312 [1, 1, 1, 1, 1, 1, 1, 1, 1, ...] A000012 %e A265312 [1, 1, 2, 5, 15, 52, 203, 877, 4140, ...] A000110 %e A265312 [1, 1, 2, 6, 23, 106, 568, 3459, 23544, ...] A187761 %e A265312 [1, 1, 2, 6, 24, 119, 700, 4748, 36403, ...] A264432 %e A265312 [1, 1, 2, 6, 24, 120, 719, 5013, 39812, ...] %e A265312 [1, 1, 2, 6, 24, 120, 720, 5039, 40285, ...] %e A265312 [... ...] %e A265312 [1, 1, 2, 6, 24, 120, 720, 5040, 40320, ...] A000142 = main diagonal. %p A265312 A:= proc(n, h) option remember; `if`(min(n, h)=0, 1, add( %p A265312 binomial(n-1, j-1)*A(j-1, h-1)*A(n-j, h), j=1..n)) %p A265312 end: %p A265312 seq(seq(A(n, d-n), n=0..d), d=0..12); # _Alois P. Heinz_, Aug 21 2017 %t A265312 A[n_, h_]:=A[n, h]=If[Min[n, h]==0, 1, Sum[Binomial[n - 1, j - 1] A[j - 1, h - 1] A[n - j, h] , {j, n}]]; Table[A[n, d - n], {d, 0, 12}, {n, 0, d}]//Flatten (* _Indranil Ghosh_, Aug 21 2017, after maple code *) %o A265312 (Sage) # uses[bell_transform from A264428] %o A265312 def bell_number_matrix(ord, len): %o A265312 b = [1]*len; L = [b] %o A265312 for k in (1..ord-1): %o A265312 b = [sum(bell_transform(n, b)) for n in range(len)] %o A265312 L.append(b) %o A265312 return matrix(ZZ, L) %o A265312 print(bell_number_matrix(6, 9)) %o A265312 (Python) %o A265312 from sympy.core.cache import cacheit %o A265312 from sympy import binomial %o A265312 @cacheit %o A265312 def A(n, h): return 1 if min(n, h)==0 else sum([binomial(n - 1, j - 1)*A(j - 1, h - 1)*A(n - j, h) for j in range(1, n + 1)]) %o A265312 for d in range(13): print([A(n, d - n) for n in range(d + 1)]) # _Indranil Ghosh_, Aug 21 2017, after Maple code %Y A265312 Cf. A000012, A000110, A000142, A187761, A264428, A264432, A265313. %K A265312 nonn,tabl %O A265312 0,9 %A A265312 _Peter Luschny_, Dec 06 2015