cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265312 Square array read by ascending antidiagonals, Bell numbers iterated by the Bell transform.

This page as a plain text file.
%I A265312 #30 Mar 28 2020 10:58:48
%S A265312 1,1,1,1,1,1,1,1,2,1,1,1,2,5,1,1,1,2,6,15,1,1,1,2,6,23,52,1,1,1,2,6,
%T A265312 24,106,203,1,1,1,2,6,24,119,568,877,1,1,1,2,6,24,120,700,3459,4140,1,
%U A265312 1,1,2,6,24,120,719,4748,23544,21147,1,1,1,2,6,24,120,720,5013,36403,176850,115975,1
%N A265312 Square array read by ascending antidiagonals, Bell numbers iterated by the Bell transform.
%H A265312 Alois P. Heinz, <a href="/A265312/b265312.txt">Antidiagonals n = 0..140, flattened</a>
%H A265312 Peter Luschny, <a href="https://oeis.org/wiki/User:Peter_Luschny/BellTransform">The Bell transform</a>
%e A265312 [1, 1, 1, 1,  1,   1,   1,    1,     1, ...] A000012
%e A265312 [1, 1, 2, 5, 15,  52, 203,  877,  4140, ...] A000110
%e A265312 [1, 1, 2, 6, 23, 106, 568, 3459, 23544, ...] A187761
%e A265312 [1, 1, 2, 6, 24, 119, 700, 4748, 36403, ...] A264432
%e A265312 [1, 1, 2, 6, 24, 120, 719, 5013, 39812, ...]
%e A265312 [1, 1, 2, 6, 24, 120, 720, 5039, 40285, ...]
%e A265312 [...                                    ...]
%e A265312 [1, 1, 2, 6, 24, 120, 720, 5040, 40320, ...] A000142 = main diagonal.
%p A265312 A:= proc(n, h) option remember; `if`(min(n, h)=0, 1, add(
%p A265312       binomial(n-1, j-1)*A(j-1, h-1)*A(n-j, h), j=1..n))
%p A265312     end:
%p A265312 seq(seq(A(n, d-n), n=0..d), d=0..12);  # _Alois P. Heinz_, Aug 21 2017
%t A265312 A[n_, h_]:=A[n, h]=If[Min[n, h]==0, 1, Sum[Binomial[n - 1, j - 1] A[j - 1, h - 1] A[n - j, h] , {j, n}]]; Table[A[n, d - n], {d, 0, 12}, {n, 0, d}]//Flatten (* _Indranil Ghosh_, Aug 21 2017, after maple code *)
%o A265312 (Sage) # uses[bell_transform from A264428]
%o A265312 def bell_number_matrix(ord, len):
%o A265312     b = [1]*len; L = [b]
%o A265312     for k in (1..ord-1):
%o A265312         b = [sum(bell_transform(n, b)) for n in range(len)]
%o A265312         L.append(b)
%o A265312     return matrix(ZZ, L)
%o A265312 print(bell_number_matrix(6, 9))
%o A265312 (Python)
%o A265312 from sympy.core.cache import cacheit
%o A265312 from sympy import binomial
%o A265312 @cacheit
%o A265312 def A(n, h): return 1 if min(n, h)==0 else sum([binomial(n - 1, j - 1)*A(j - 1, h - 1)*A(n - j, h) for j in range(1, n + 1)])
%o A265312 for d in range(13): print([A(n, d - n) for n in range(d + 1)]) # _Indranil Ghosh_, Aug 21 2017, after Maple code
%Y A265312 Cf. A000012, A000110, A000142, A187761, A264428, A264432, A265313.
%K A265312 nonn,tabl
%O A265312 0,9
%A A265312 _Peter Luschny_, Dec 06 2015