A265313 Square array read by ascending antidiagonals, complementary Bell numbers iterated by the Bell transform.
1, 1, 1, 1, -1, 1, 1, -1, 0, 1, 1, -1, 2, 1, 1, 1, -1, 2, -4, 1, 1, 1, -1, 2, -6, 9, -2, 1, 1, -1, 2, -6, 22, -22, -9, 1, 1, -1, 2, -6, 24, -95, 54, -9, 1, 1, -1, 2, -6, 24, -118, 472, -139, 50, 1, 1, -1, 2, -6, 24, -120, 683, -2638, 372, 267, 1, 1, -1, 2, -6, 24
Offset: 0
Examples
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] A000012 [ 1, -1, 0, 1, 1, -2, -9, -9, 50, ...] A000587 [ 1, -1, 2, -4, 9, -22, 54, -139, 372, ...] A265023 [ 1, -1, 2, -6, 22, -95, 472, -2638, 16343, ...] [ 1, -1, 2, -6, 24, -118, 683, -4533, 33862, ...] [ 1, -1, 2, -6, 24, -120, 718, -4989, 39405, ...] [... ...] [ 1, -1, 2, -6, 24, -120, 720, -5040, 40320, ...] A133942
Links
- Peter Luschny, The Bell transform
Programs
-
Sage
# uses[bell_transform from A264428] def complementary_bell_number_matrix(ord, len): b = [1]*len; L = [b] for k in (1..ord-1): b = [sum((-1)^n*c for (n, c) in enumerate(bell_transform(n, b))) for n in range(len)] L.append(b) return matrix(ZZ, L) print(complementary_bell_number_matrix(6,9))