cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265313 Square array read by ascending antidiagonals, complementary Bell numbers iterated by the Bell transform.

Original entry on oeis.org

1, 1, 1, 1, -1, 1, 1, -1, 0, 1, 1, -1, 2, 1, 1, 1, -1, 2, -4, 1, 1, 1, -1, 2, -6, 9, -2, 1, 1, -1, 2, -6, 22, -22, -9, 1, 1, -1, 2, -6, 24, -95, 54, -9, 1, 1, -1, 2, -6, 24, -118, 472, -139, 50, 1, 1, -1, 2, -6, 24, -120, 683, -2638, 372, 267, 1, 1, -1, 2, -6, 24
Offset: 0

Views

Author

Peter Luschny, Dec 06 2015

Keywords

Examples

			[ 1,  1, 1,  1,  1,   1,    1,     1,     1, ...] A000012
[ 1, -1, 0,  1,  1,  -2,   -9,    -9,    50, ...] A000587
[ 1, -1, 2, -4,  9, -22,   54,  -139,   372, ...] A265023
[ 1, -1, 2, -6, 22, -95,  472, -2638, 16343, ...]
[ 1, -1, 2, -6, 24, -118, 683, -4533, 33862, ...]
[ 1, -1, 2, -6, 24, -120, 718, -4989, 39405, ...]
[...                                         ...]
[ 1, -1, 2, -6, 24, -120, 720, -5040, 40320, ...] A133942
		

Crossrefs

Programs

  • Sage
    # uses[bell_transform from A264428]
    def complementary_bell_number_matrix(ord, len):
        b = [1]*len; L = [b]
        for k in (1..ord-1):
            b = [sum((-1)^n*c for (n, c) in enumerate(bell_transform(n, b))) for n in range(len)]
            L.append(b)
        return matrix(ZZ, L)
    print(complementary_bell_number_matrix(6,9))