This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265332 #22 Dec 19 2021 04:17:37 %S A265332 1,2,1,3,1,1,2,4,1,1,1,2,1,2,3,5,1,1,1,1,2,1,1,2,1,2,3,1,2,3,4,6,1,1, %T A265332 1,1,1,2,1,1,1,2,1,1,2,1,2,3,1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,7,1,1,1,1, %U A265332 1,1,2,1,1,1,1,2,1,1,1,2,1,1,2,1,2,3,1,1,1,2,1,1,2,1,2,3,1,1,2,1,2,3,1,2,3,4,1,1,2,1,2,3,1,2,3,4,1,2,3,4 %N A265332 a(n) is the index of the column in A265901 where n appears; also the index of the row in A265903 where n appears. %C A265332 If all 1's are deleted, the remaining terms are the sequence incremented. - after _Franklin T. Adams-Watters_ Oct 05 2006 comment in A051135. %C A265332 Ordinal transform of A162598. %H A265332 Antti Karttunen, <a href="/A265332/b265332.txt">Table of n, a(n) for n = 1..8192</a> %H A265332 T. Kubo and R. Vakil, <a href="http://dx.doi.org/10.1016/0012-365X(94)00303-Z">On Conway's recursive sequence</a>, Discr. Math. 152 (1996), 225-252. %F A265332 a(1) = 1; for n > 1, a(n) = A051135(n). %e A265332 Illustration how the sequence can be constructed by concatenating the frequency counts Q_n of each successive level n of A004001-tree: %e A265332 -- %e A265332 1 Q_0 = (1) %e A265332 | %e A265332 _2__ Q_1 = (2) %e A265332 / \ %e A265332 _3 __4_____ Q_2 = (1,3) %e A265332 / / | \ %e A265332 _5 _6 _7 __8___________ Q_3 = (1,1,2,4) %e A265332 / / / | / | \ \ %e A265332 _9 10 11 12 13 14 15___ 16_________ Q_4 = (1,1,1,2,1,2,3,5) %e A265332 / / / / | / / | |\ \ | \ \ \ \ %e A265332 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 %e A265332 -- %e A265332 The above illustration copied from the page 229 of Kubo and Vakil paper (page 5 in PDF). %t A265332 terms = 120; %t A265332 h[1] = 1; h[2] = 1; %t A265332 h[n_] := h[n] = h[h[n - 1]] + h[n - h[n - 1]]; %t A265332 seq[nmax_] := seq[nmax] = (Length /@ Split[Sort @ Array[h, nmax, 2]])[[;; terms]]; %t A265332 seq[nmax = 2 terms]; %t A265332 seq[nmax += terms]; %t A265332 While[seq[nmax] != seq[nmax - terms], nmax += terms]; %t A265332 seq[nmax] (* _Jean-François Alcover_, Dec 19 2021 *) %o A265332 (Scheme) (define (A265332 n) (if (= 1 n) 1 (A051135 n))) %Y A265332 Essentially same as A051135 apart from the initial term, which here is set as a(1)=1. %Y A265332 Cf. A004001, A265901, A265903. %Y A265332 Cf. A162598 (corresponding other index). %Y A265332 Cf. A265754. %Y A265332 Cf. also A267108, A267109, A267110. %K A265332 nonn %O A265332 1,2 %A A265332 _Antti Karttunen_, Jan 09 2016