This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265342 #14 May 25 2017 03:16:59 %S A265342 0,2,4,6,8,22,12,10,16,18,20,58,24,26,76,66,64,70,36,14,40,30,28,34, %T A265342 48,46,52,54,56,166,60,62,184,174,172,178,72,74,220,78,80,238,228,226, %U A265342 232,198,68,202,192,190,196,210,208,214,108,38,112,42,44,130,120,118,124,90,32,94,84,82,88,102,100,106,144 %N A265342 Permutation of even numbers: a(n) = 2 * A265351(n). %C A265342 Iterating this sequence as 1, a(1), a(a(1)), a(a(a(1))), ... yields A264980. %H A265342 Antti Karttunen, <a href="/A265342/b265342.txt">Table of n, a(n) for n = 0..9841</a> %F A265342 a(n) = 2 * A265351(n). %o A265342 (Scheme) (define (A265342 n) (* 2 (A265351 n))) %o A265342 (Python) %o A265342 from sympy import factorint %o A265342 from sympy.ntheory.factor_ import digits %o A265342 from operator import mul %o A265342 def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3) %o A265342 def a038502(n): %o A265342 f=factorint(n) %o A265342 return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f]) %o A265342 def a038500(n): return n/a038502(n) %o A265342 def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n) %o A265342 def a263272(n): return a263273(2*n)/2 %o A265342 def a(n): return 2*a263272(a263273(n)) # _Indranil Ghosh_, May 25 2017 %Y A265342 Cf. A265351. %Y A265342 Cf. also A265341, A263273, A264980. %K A265342 nonn %O A265342 0,2 %A A265342 _Antti Karttunen_, Dec 07 2015