This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265351 #11 May 25 2017 03:17:14 %S A265351 0,1,2,3,4,11,6,5,8,9,10,29,12,13,38,33,32,35,18,7,20,15,14,17,24,23, %T A265351 26,27,28,83,30,31,92,87,86,89,36,37,110,39,40,119,114,113,116,99,34, %U A265351 101,96,95,98,105,104,107,54,19,56,21,22,65,60,59,62,45,16,47,42,41,44,51,50,53,72,25,74,69,68,71,78,77,80,81 %N A265351 Permutation of nonnegative integers: a(n) = A263272(A263273(n)). %C A265351 Composition of A263273 with the permutation obtained from its even bisection. %H A265351 Antti Karttunen, <a href="/A265351/b265351.txt">Table of n, a(n) for n = 0..9841</a> %H A265351 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A265351 a(n) = A263272(A263273(n)). %F A265351 As a composition of other related permutations: %F A265351 a(n) = A264974(A265367(n)). %F A265351 Other identities. For all n >= 0: %F A265351 a(3*n) = 3*a(n). %F A265351 a(n) = A265342(n)/2. %o A265351 (Scheme) (define (A265351 n) (A263272 (A263273 n))) %o A265351 (Python) %o A265351 from sympy import factorint %o A265351 from sympy.ntheory.factor_ import digits %o A265351 from operator import mul %o A265351 def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3) %o A265351 def a038502(n): %o A265351 f=factorint(n) %o A265351 return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f]) %o A265351 def a038500(n): return n/a038502(n) %o A265351 def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n) %o A265351 def a263272(n): return a263273(2*n)/2 %o A265351 def a(n): return a263272(a263273(n)) # _Indranil Ghosh_, May 25 2017 %Y A265351 Inverse: A265352. %Y A265351 Cf. A263272, A263273, A264974, A265367. %Y A265351 Cf. also A265342, A265353, A265355, A265356. %K A265351 nonn,base %O A265351 0,3 %A A265351 _Antti Karttunen_, Dec 07 2015