This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265352 #10 Jun 08 2017 03:20:35 %S A265352 0,1,2,3,4,7,6,19,8,9,10,5,12,13,22,21,64,23,18,55,20,57,58,25,24,73, %T A265352 26,27,28,11,30,31,16,15,46,17,36,37,14,39,40,67,66,199,68,63,190,65, %U A265352 192,193,70,69,208,71,54,163,56,165,166,61,60,181,62,171,172,59,174,175,76,75,226,77,72,217,74,219,220,79,78,235,80,81 %N A265352 Permutation of nonnegative integers: a(n) = A263273(A263272(n)). %C A265352 Composition of A263273 with the permutation obtained from its even bisection. %H A265352 Antti Karttunen, <a href="/A265352/b265352.txt">Table of n, a(n) for n = 0..9841</a> %H A265352 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A265352 a(n) = A263273(A263272(n)). %F A265352 As a composition of other related permutations: %F A265352 a(n) = A265368(A264974(n)). %F A265352 Other identities. For all n >= 0: %F A265352 a(3*n) = 3*a(n). %o A265352 (Scheme) (define (A265352 n) (A263273 (A263272 n))) %o A265352 (Python) %o A265352 from sympy import factorint %o A265352 from sympy.ntheory.factor_ import digits %o A265352 from operator import mul %o A265352 def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3) %o A265352 def a038502(n): %o A265352 f=factorint(n) %o A265352 return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f]) %o A265352 def a038500(n): return n/a038502(n) %o A265352 def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n) %o A265352 def a(n): return a263273(a263273(2*n)/2) # _Indranil Ghosh_, Jun 08 2017 %Y A265352 Inverse: A265351. %Y A265352 Cf. A263272, A263273, A264974, A265368. %Y A265352 Cf. also A265354, A265355, A265356 %K A265352 nonn,base %O A265352 0,3 %A A265352 _Antti Karttunen_, Dec 07 2015