This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265353 #10 May 22 2017 20:07:56 %S A265353 0,1,3,2,4,10,6,9,12,5,7,19,8,13,31,24,28,37,15,11,33,18,27,30,21,36, %T A265353 39,14,16,46,23,25,73,69,55,64,17,22,58,26,40,94,78,85,112,51,34,100, %U A265353 72,82,91,75,109,118,42,32,96,20,35,105,60,99,102,45,29,87,54,81,84,57,90,93,48,38,114,63,108,111,66,117,120,41 %N A265353 Permutation of nonnegative integers: a(n) = A264985(A263273(n)). %C A265353 Composition of A263273 with the permutation obtained from its odd bisection. %H A265353 Antti Karttunen, <a href="/A265353/b265353.txt">Table of n, a(n) for n = 0..9841</a> %H A265353 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A265353 a(n) = A264985(A263273(n)). %o A265353 (Scheme) (define (A265353 n) (A264985 (A263273 n))) %o A265353 (Python) %o A265353 from sympy import factorint %o A265353 from sympy.ntheory.factor_ import digits %o A265353 from operator import mul %o A265353 def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3) %o A265353 def a038502(n): %o A265353 f=factorint(n) %o A265353 return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f]) %o A265353 def a038500(n): return n/a038502(n) %o A265353 def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n) %o A265353 def a264985(n): return (a263273(2*n + 1) - 1)/2 %o A265353 def a(n): return a264985(a263273(n)) # _Indranil Ghosh_, May 22 2017 %Y A265353 Inverse: A265354. %Y A265353 Cf. A263273, A264985. %Y A265353 Cf. also A265341, A265351, A265355, A265356. %K A265353 nonn,base %O A265353 0,3 %A A265353 _Antti Karttunen_, Dec 07 2015