cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265379 Binary representation of the n-th iteration of the "Rule 158" elementary cellular automaton starting with a single ON (black) cell.

This page as a plain text file.
%I A265379 #33 Feb 16 2025 08:33:27
%S A265379 1,111,11101,1110011,111011101,11100110011,1110111011101,
%T A265379 111001100110011,11101110111011101,1110011001100110011,
%U A265379 111011101110111011101,11100110011001100110011,1110111011101110111011101,111001100110011001100110011,11101110111011101110111011101
%N A265379 Binary representation of the n-th iteration of the "Rule 158" elementary cellular automaton starting with a single ON (black) cell.
%H A265379 Robert Price, <a href="/A265379/b265379.txt">Table of n, a(n) for n = 0..499</a>
%H A265379 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Rule158.html">Rule 158</a>
%H A265379 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A265379 Stephen Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>, Wolfram Media, 2002; p. 55.
%H A265379 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A265379 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%H A265379 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,10001,0,-10000).
%F A265379 From _Colin Barker_, Dec 14 2015 and Apr 18 2019: (Start)
%F A265379 a(n) = 10001*a(n-2) - 10000*a(n-4) for n>3.
%F A265379 G.f.: (1+111*x+1100*x^2-100*x^3) / ((1-x)*(1+x)*(1-100*x)*(1+100*x)).
%F A265379 (End)
%F A265379 a(n) = floor((11100 - (n mod 2))*100^n/9999). - _Karl V. Keller, Jr._, Sep 20 2021
%e A265379 From _Michael De Vlieger_, Dec 09 2015: (Start)
%e A265379 First 12 rows:
%e A265379                         1
%e A265379                       1 1 1
%e A265379                     1 1 1 0 1
%e A265379                   1 1 1 0 0 1 1
%e A265379                 1 1 1 0 1 1 1 0 1
%e A265379               1 1 1 0 0 1 1 0 0 1 1
%e A265379             1 1 1 0 1 1 1 0 1 1 1 0 1
%e A265379           1 1 1 0 0 1 1 0 0 1 1 0 0 1 1
%e A265379         1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1
%e A265379       1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
%e A265379     1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1
%e A265379   1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
%e A265379 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1
%e A265379 (End)
%t A265379 rule = 158; rows = 20; Table[FromDigits[Table[Take[CellularAutomaton[rule,{{1},0}, rows-1, {All,All}][[k]], {rows-k+1, rows+k-1}], {k,1,rows}][[k]]], {k,1,rows}]
%o A265379 (Python) print([(11100 - (n%2))*100**n//9999 for n in range(30)]) # _Karl V. Keller, Jr._, Sep 20 2021
%Y A265379 Cf. A071037 (cells), A118171 (decimal).
%K A265379 nonn,easy
%O A265379 0,2
%A A265379 _Robert Price_, Dec 07 2015