cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265380 Binary representation of the middle column of the "Rule 158" elementary cellular automaton starting with a single ON (black) cell.

This page as a plain text file.
%I A265380 #40 Feb 16 2025 08:33:27
%S A265380 1,11,111,1110,11101,111011,1110111,11101110,111011101,1110111011,
%T A265380 11101110111,111011101110,1110111011101,11101110111011,
%U A265380 111011101110111,1110111011101110,11101110111011101,111011101110111011,1110111011101110111,11101110111011101110
%N A265380 Binary representation of the middle column of the "Rule 158" elementary cellular automaton starting with a single ON (black) cell.
%D A265380 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
%H A265380 Robert Price, <a href="/A265380/b265380.txt">Table of n, a(n) for n = 0..999</a>
%H A265380 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A265380 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A265380 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A265380 Conjectures from _Colin Barker_, Dec 14 2015 and Apr 18 2019: (Start)
%F A265380 a(n) = 10*a(n-1) + a(n-4) - 10*a(n-5) for n>4.
%F A265380 G.f.: (1+x+x^2) / ((1-x)*(1+x)*(1-10*x)*(1+x^2)).
%F A265380 (End)
%e A265380 From _Michael De Vlieger_, Dec 09 2015: (Start)
%e A265380 First 8 rows at left, ignoring "0" outside of range of 1's, the center column values in parentheses, and at right the value of center column cells up to that row :
%e A265380                         (1)                          -> 1
%e A265380                       1 (1) 1                        -> 11
%e A265380                     1 1 (1) 0 1                      -> 111
%e A265380                   1 1 1 (0) 0 1 1                    -> 1110
%e A265380                 1 1 1 0 (1) 1 1 0 1                  -> 11101
%e A265380               1 1 1 0 0 (1) 1 0 0 1 1                -> 111011
%e A265380             1 1 1 0 1 1 (1) 0 1 1 1 0 1              -> 1110111
%e A265380           1 1 1 0 0 1 1 (0) 0 1 1 0 0 1 1            -> 11101110
%e A265380         1 1 1 0 1 1 1 0 (1) 1 1 0 1 1 1 0 1          -> 111011101
%e A265380       1 1 1 0 0 1 1 0 0 (1) 1 0 0 1 1 0 0 1 1        -> 1110111011
%e A265380     1 1 1 0 1 1 1 0 1 1 (1) 0 1 1 1 0 1 1 1 0 1      -> 11101110111
%e A265380   1 1 1 0 0 1 1 0 0 1 1 (0) 0 1 1 0 0 1 1 0 0 1 1    -> 111011101110
%e A265380 1 1 1 0 1 1 1 0 1 1 1 0 (1) 1 1 0 1 1 1 0 1 1 1 0 1  -> 1110111011101
%e A265380 (End)
%t A265380 f[n_] := Block[{w = {}}, Do[AppendTo[w, Boole[Mod[k, 4] != 3]], {k, 0, n}]; FromDigits@ w]; Table[f@ n, {n, 0, 19}] (* _Michael De Vlieger_, Dec 09 2015 *)
%Y A265380 Cf. A071037, A265381.
%K A265380 nonn,easy
%O A265380 0,2
%A A265380 _Robert Price_, Dec 07 2015
%E A265380 Removed an unjustified claim that _Colin Barker_'s conjectures are correct. Removed 2 programs based on conjectures. - _N. J. A. Sloane_, Jun 13 2022