cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265381 Decimal representation of the middle column of the "Rule 158" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 3, 7, 14, 29, 59, 119, 238, 477, 955, 1911, 3822, 7645, 15291, 30583, 61166, 122333, 244667, 489335, 978670, 1957341, 3914683, 7829367, 15658734, 31317469, 62634939, 125269879, 250539758, 501079517, 1002159035, 2004318071, 4008636142, 8017272285
Offset: 0

Views

Author

Robert Price, Dec 07 2015

Keywords

Examples

			From _Michael De Vlieger_, Dec 09 2015: (Start)
First 8 rows at left, ignoring "0" outside of range of 1's, the center column values in parentheses. The center column values up to that row are concatenated then converted into decimal at right:
             Rule 158                   Binary     Decimal
                (1)                 ->         1 =   1
              1 (1) 1               ->        11 =   3
            1 1 (1) 0 1             ->       111 =   7
          1 1 1 (0) 0 1 1           ->      1110 =  14
        1 1 1 0 (1) 1 1 0 1         ->     11101 =  29
      1 1 1 0 0 (1) 1 0 0 1 1       ->    111011 =  59
    1 1 1 0 1 1 (1) 0 1 1 1 0 1     ->   1110111 = 119
  1 1 1 0 0 1 1 (0) 0 1 1 0 0 1 1   ->  11101110 = 238
1 1 1 0 1 1 1 0 (1) 1 1 0 1 1 1 0 1 -> 111011101 = 477
(End)
		

Crossrefs

Cf. A071037, A265380 (binary).

Programs

  • Mathematica
    f[n_] := Block[{w = {}}, Do[AppendTo[w, Boole[Mod[k, 4] != 3]], {k, 0, n}]; FromDigits[w, 2]]; Table[f@ n, {n, 0, 32}] (* Michael De Vlieger, Dec 09 2015 *)
  • Python
    print([7*2**(n+2)//15 for n in range(34)]) # Karl V. Keller, Jr., Oct 01 2020

Formula

From Colin Barker, Dec 07 2015 and Apr 16 2019: (Start)
a(n) = (-45+5*(-1)^n-(6-i*3)*(-i)^n-(6+3*i)*i^n+7*2^(4+n))/60 where i = sqrt(-1).
a(n) = 2*a(n-1)+a(n-4)-2*a(n-5) for n>4.
G.f.: (1+x+x^2) / ((1-x)*(1+x)*(1-2*x)*(1+x^2)).
(End)
a(n) = floor(7*2^(n+2)/15) for n>=0. - Karl V. Keller, Jr., Oct 01 2020