cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265382 Total number of ON (black) cells after n iterations of the "Rule 158" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 4, 8, 13, 20, 27, 37, 46, 59, 70, 86, 99, 118, 133, 155, 172, 197, 216, 244, 265, 296, 319, 353, 378, 415, 442, 482, 511, 554, 585, 631, 664, 713, 748, 800, 837, 892, 931, 989, 1030, 1091, 1134, 1198, 1243, 1310, 1357, 1427, 1476, 1549, 1600, 1676, 1729
Offset: 0

Views

Author

Robert Price, Dec 07 2015

Keywords

Examples

			From _Michael De Vlieger_, Dec 09 2015: (Start)
First 12 rows, replacing "0" with "." for better visibility of ON cells, followed by the total number of 1's per row, and the running total up to that row:
                        1                          =  1 ->   1
                      1 1 1                        =  3 ->   4
                    1 1 1 . 1                      =  4 ->   8
                  1 1 1 . . 1 1                    =  5 ->  13
                1 1 1 . 1 1 1 . 1                  =  7 ->  20
              1 1 1 . . 1 1 . . 1 1                =  7 ->  27
            1 1 1 . 1 1 1 . 1 1 1 . 1              = 10 ->  37
          1 1 1 . . 1 1 . . 1 1 . . 1 1            =  9 ->  46
        1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1          = 13 ->  59
      1 1 1 . . 1 1 . . 1 1 . . 1 1 . . 1 1        = 11 ->  70
    1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1      = 16 ->  86
  1 1 1 . . 1 1 . . 1 1 . . 1 1 . . 1 1 . . 1 1    = 13 ->  99
1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1  = 19 -> 118
(End)
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A071037.

Programs

  • Mathematica
    rule = 158; rows = 30; Table[Total[Take[Table[Total[Table[Take[CellularAutomaton[rule,{{1},0},rows-1,{All,All}][[k]],{rows-k+1,rows+k-1}],{k,1,rows}][[k]]],{k,1,rows}],k]],{k,1,rows}]
    Accumulate[Count[#, n_ /; n == 1] & /@ CellularAutomaton[158, {{1}, 0}, 51]] (* Michael De Vlieger, Dec 09 2015 *)

Formula

Conjectures from Colin Barker, Dec 07 2015 and Apr 18 2019: (Start)
a(n) = 1/16*(10*n^2+2*(-1)^n*n+34*n-3*(-1)^n+19).
a(n) = 1/16*(10*n^2+36*n+16) for n even.
a(n) = 1/16*(10*n^2+32*n+22) for n odd.
a(n) = 2*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) for n>4.
G.f.: (1+3*x+2*x^2-x^3) / ((1-x)^3*(1+x)^2).
(End)